Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan.
Department of Statistics, University of Sargodha, Sargodha, Pakistan.
Comput Intell Neurosci. 2021 Sep 8;2021:4407328. doi: 10.1155/2021/4407328. eCollection 2021.
There is a long history of interest in modeling Poisson regression in different fields of study. The focus of this work is on handling the issues that occur after modeling the count data. For the prediction and analysis of count data, it is valuable to study the factors that influence the performance of the model and the decision based on the analysis of that model. In regression analysis, multicollinearity and influential observations separately and jointly affect the model estimation and inferences. In this article, we focused on multicollinearity and influential observations simultaneously. To evaluate the reliability and quality of regression estimates and to overcome the problems in model fitting, we proposed new diagnostic methods based on Sherman-Morrison Woodbury (SMW) theorem to detect the influential observations using approximate deletion formulas for the Poisson regression model with the Liu estimator. A Monte Carlo method is done for the assessment of the proposed diagnostic methods. Real data are also considered for the evaluation of the proposed methods. Results show the superiority of the proposed diagnostic methods in detecting unusual observations in the presence of multicollinearity compared to the traditional maximum likelihood estimation method.
在不同的研究领域中,对泊松回归模型进行建模一直以来都很受关注。本工作的重点是处理在对计数数据进行建模后出现的问题。对于计数数据的预测和分析,研究影响模型性能的因素以及基于该模型的分析做出决策是很有价值的。在回归分析中,多重共线性和有影响的观测值分别和共同影响模型的估计和推断。在本文中,我们同时关注了多重共线性和有影响的观测值。为了评估回归估计的可靠性和质量,并克服模型拟合中的问题,我们提出了基于 Sherman-Morrison Woodbury (SMW) 定理的新诊断方法,使用 Liu 估计器的泊松回归模型的近似删除公式来检测有影响的观测值。通过蒙特卡罗方法对所提出的诊断方法进行了评估。还考虑了真实数据来评估所提出的方法。结果表明,与传统的最大似然估计方法相比,在所存在多重共线性的情况下,提出的诊断方法在检测异常观测值方面具有优越性。