Suppr超能文献

采集时间和惩罚因子在基于硅光电倍增管的F-FDG PET-CT系统的块序贯正则化期望最大化重建算法中的影响

Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for F-FDG.

作者信息

Trägårdh Elin, Minarik David, Almquist Helén, Bitzén Ulrika, Garpered Sabine, Hvittfelt Erland, Olsson Berit, Oddstig Jenny

机构信息

Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Inga Marie Nilssons gata 49, 205 02, Malmö, Sweden.

Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.

出版信息

EJNMMI Res. 2019 Jul 24;9(1):64. doi: 10.1186/s13550-019-0535-4.

Abstract

BACKGROUND

Block-sequential regularized expectation maximization (BSREM), commercially Q. Clear (GE Healthcare, Milwaukee, WI, USA), is a reconstruction algorithm that allows for a fully convergent iterative reconstruction leading to higher image contrast compared to conventional reconstruction algorithms, while also limiting noise. The noise penalization factor β controls the trade-off between noise level and resolution and can be adjusted by the user. The aim was to evaluate the influence of different β values for different activity time products (ATs = administered activity × acquisition time) in whole-body F-fluorodeoxyglucose (FDG) positron emission tomography with computed tomography (PET-CT) regarding quantitative data, interpretation, and quality assessment of the images. Twenty-five patients with known or suspected malignancies, referred for clinical F-FDG PET-CT examinations acquired on a silicon photomultiplier PET-CT scanner, were included. The data were reconstructed using BSREM with β values of 100-700 and ATs of 4-16 MBq/kg × min/bed (acquisition times of 1, 1.5, 2, 3, and 4 min/bed). Noise level, lesion SUV, and lesion SUV were calculated. Image quality and lesion detectability were assessed by four nuclear medicine physicians for acquisition times of 1.0 and 1.5 min/bed position.

RESULTS

The noise level decreased with increasing β values and ATs. Lesion SUV varied considerably between different β values and ATs, whereas SUV was more stable. For an AT of 6 (in our case 1.5 min/bed), the best image quality was obtained with a β of 600 and the best lesion detectability with a β of 500. AT of 4 generated poor-quality images and false positive uptakes due to noise.

CONCLUSIONS

For oncologic whole-body F-FDG examinations on a SiPM-based PET-CT, we propose using an AT of 6 (i.e., 4 MBq/kg and 1.5 min/bed) reconstructed with BSREM using a β value of 500-600 in order to ensure image quality and lesion detection rate as well as a high patient throughput. We do not recommend using AT < 6 since the risk of false positive uptakes due to noise increases.

摘要

背景

块序贯正则期望最大化(BSREM),商品名为Q. Clear(美国威斯康星州密尔沃基市通用电气医疗集团),是一种重建算法,与传统重建算法相比,它能实现完全收敛的迭代重建,从而提高图像对比度,同时还能限制噪声。噪声惩罚因子β控制着噪声水平和分辨率之间的权衡,用户可以对其进行调整。本研究旨在评估在全身F-氟脱氧葡萄糖(FDG)正电子发射断层扫描与计算机断层扫描(PET-CT)中,不同的β值对不同活度时间乘积(ATs = 注入活度×采集时间)在定量数据、图像解读及质量评估方面的影响。纳入了25例已知或疑似恶性肿瘤的患者,他们因临床F-FDG PET-CT检查而被转诊至一台基于硅光电倍增管的PET-CT扫描仪进行检查。使用BSREM对数据进行重建,β值为100 - 700,ATs为4 - 16 MBq/kg×min/床位(采集时间为1、1.5、2、3和4 min/床位)。计算噪声水平、病变SUV及标准化摄取值(SUV)。由四名核医学医师对采集时间为1.0和1.5 min/床位位置的图像质量和病变可检测性进行评估。

结果

噪声水平随β值和ATs的增加而降低。不同β值和ATs之间病变SUV差异较大,而标准化摄取值(SUV)则更为稳定。对于AT为6(在我们的案例中为1.5 min/床位)的情况,β值为600时图像质量最佳,β值为500时病变可检测性最佳。AT为4时会产生因噪声导致的低质量图像和假阳性摄取。

结论

对于基于硅光电倍增管的PET-CT上的肿瘤全身F-FDG检查,我们建议使用AT为6(即4 MBq/kg和1.5 min/床位)并采用β值为500 - 600的BSREM进行重建,以确保图像质量、病变检测率以及高患者通量。我们不建议使用AT < 6,因为因噪声导致假阳性摄取的风险会增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验