Suppr超能文献

老年人外周功能缺陷和相位锁定下降。

Peripheral deficits and phase-locking declines in aging adults.

机构信息

Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.

出版信息

Hear Res. 2021 Apr;403:108188. doi: 10.1016/j.heares.2021.108188. Epub 2021 Jan 29.

Abstract

Age-related difficulties in speech understanding may arise from a decrease in the neural representation of speech sounds. A loss of outer hair cells or decrease in auditory nerve fibers may lead to a loss of temporal precision that can affect speech clarity. This study's purpose was to evaluate the peripheral contributors to phase-locking strength, a measure of temporal precision, in recordings to a sustained vowel in 30 younger and 30 older listeners with normal to near normal audiometric thresholds. Thresholds were obtained for pure tones and distortion-product otoacoustic emissions (DPOAEs). Auditory brainstem responses (ABRs) were recorded in quiet and in three levels of continuous white noise (+30, +20, and +10 dB SNR). Absolute amplitudes and latencies of Wave I in quiet and of Wave V across presentation conditions, in addition to the slope of Wave V amplitude and latency changes in noise, were calculated from these recordings. Frequency-following responses (FFRs) were recorded to synthesized /ba/ syllables of two durations, 170 and 260 ms, to determine whether age-related phase-locking deficits are more pronounced for stimuli that are sustained for longer durations. Phase locking was calculated for the early and late regions of the steady-state vowel for both syllables. Group differences were found for nearly every measure except for the slopes of Wave V latency and amplitude changes in noise. We found that outer hair cell function (DPOAEs) contributed to the variance in phase locking. However, the ABR and FFR differences were present after covarying for DPOAEs, suggesting the existence of temporal processing deficits in older listeners that are somewhat independent of outer hair cell function.

摘要

年龄相关的言语理解困难可能源于言语声音的神经表示的减少。外毛细胞的丧失或听神经纤维的减少可能导致时间精度的损失,从而影响言语清晰度。本研究的目的是评估外周因素对锁相强度的贡献,锁相强度是衡量时间精度的一种度量,在 30 名年轻和 30 名年龄较大的听力正常或接近正常的听力阈值的听众的持续元音记录中进行评估。获得了纯音和失真产物耳声发射 (DPOAEs) 的阈值。在安静和三种连续白噪声水平 (+30、+20 和 +10 dB SNR) 下记录了听觉脑干反应 (ABR)。除了噪声中波 V 幅度和潜伏期变化的斜率外,还从这些记录中计算了安静和各个呈现条件下波 I 的绝对幅度和潜伏期、波 V 的幅度和潜伏期的斜率以及噪声中的波 V 的幅度和潜伏期的斜率。记录了合成的 /ba/ 音节的频率跟随反应 (FFR),以确定与持续时间较长的刺激相比,年龄相关的锁相缺陷是否更为明显。为两个音节计算了早期和晚期稳态元音的相位锁定。除了噪声中波 V 潜伏期和幅度变化的斜率外,几乎每个测量值都存在组间差异。我们发现,外毛细胞功能 (DPOAEs) 对锁相的变异性有贡献。然而,在协方差为 DPOAEs 之后,ABR 和 FFR 的差异仍然存在,这表明老年听众存在时间处理缺陷,这些缺陷在某种程度上独立于外毛细胞功能。

相似文献

1
Peripheral deficits and phase-locking declines in aging adults.
Hear Res. 2021 Apr;403:108188. doi: 10.1016/j.heares.2021.108188. Epub 2021 Jan 29.
4
Aging effects on the neural representation and perception of consonant transition cues.
Hear Res. 2024 Jul;448:109034. doi: 10.1016/j.heares.2024.109034. Epub 2024 May 17.
6
Aging degrades the neural encoding of simple and complex sounds in the human brainstem.
J Am Acad Audiol. 2013 Jul-Aug;24(7):590-9; quiz 643-4. doi: 10.3766/jaaa.24.7.7.
7
The Role of Age-Related Declines in Subcortical Auditory Processing in Speech Perception in Noise.
J Assoc Res Otolaryngol. 2016 Oct;17(5):441-60. doi: 10.1007/s10162-016-0564-x. Epub 2016 May 23.
8
Brainstem Evoked Potential Indices of Subcortical Auditory Processing After Mild Traumatic Brain Injury.
Ear Hear. 2017 Jul/Aug;38(4):e200-e214. doi: 10.1097/AUD.0000000000000411.
9
Enhanced brainstem phase-locking in low-level noise reveals stochastic resonance in the frequency-following response (FFR).
Brain Res. 2021 Nov 15;1771:147643. doi: 10.1016/j.brainres.2021.147643. Epub 2021 Aug 30.
10
Speech Perception Ability in Noise is Correlated with Auditory Brainstem Response Wave I Amplitude.
J Am Acad Audiol. 2015 May;26(5):509-517. doi: 10.3766/jaaa.14100.

引用本文的文献

1
Auditory Learning and Generalization in Older Adults: Evidence from Voice Discrimination Training.
Trends Hear. 2025 Jan-Dec;29:23312165251342436. doi: 10.1177/23312165251342436. Epub 2025 May 27.
3
Aging effects on the neural representation and perception of consonant transition cues.
Hear Res. 2024 Jul;448:109034. doi: 10.1016/j.heares.2024.109034. Epub 2024 May 17.
6
7
Effects of aging on cortical representations of continuous speech.
J Neurophysiol. 2023 Jun 1;129(6):1359-1377. doi: 10.1152/jn.00356.2022. Epub 2023 Apr 25.
8
Coupling of sensorimotor and cognitive functions in middle- and late adulthood.
Front Neurosci. 2022 Dec 1;16:1049639. doi: 10.3389/fnins.2022.1049639. eCollection 2022.
9
Age-Related Changes in Interaural-Level-Difference-Based Across-Frequency Binaural Interference.
Front Aging Neurosci. 2022 Jul 27;14:887401. doi: 10.3389/fnagi.2022.887401. eCollection 2022.
10
Difficulties Experienced by Older Listeners in Utilizing Voice Cues for Speaker Discrimination.
Front Psychol. 2022 Mar 3;13:797422. doi: 10.3389/fpsyg.2022.797422. eCollection 2022.

本文引用的文献

1
Stability of Early Auditory Evoked Potential Components Over Extended Test-Retest Intervals in Young Adults.
Ear Hear. 2020 Nov/Dec;41(6):1461-1469. doi: 10.1097/AUD.0000000000000872.
2
Age-Related Compensation Mechanism Revealed in the Cortical Representation of Degraded Speech.
J Assoc Res Otolaryngol. 2020 Aug;21(4):373-391. doi: 10.1007/s10162-020-00753-4. Epub 2020 Jul 8.
3
Extended high-frequency hearing enhances speech perception in noise.
Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23753-23759. doi: 10.1073/pnas.1903315116. Epub 2019 Nov 4.
4
Effects of Age, Cognition, and Neural Encoding on the Perception of Temporal Speech Cues.
Front Neurosci. 2019 Jul 19;13:749. doi: 10.3389/fnins.2019.00749. eCollection 2019.
6
Age Effects on Neural Representation and Perception of Silence Duration Cues in Speech.
J Speech Lang Hear Res. 2019 Apr 26;62(4S):1099-1116. doi: 10.1044/2018_JSLHR-H-ASCC7-18-0076.
7
Effects of Aging on Perceptual and Electrophysiological Responses to Acoustic Pulse Trains as a Function of Rate.
J Speech Lang Hear Res. 2019 Apr 26;62(4S):1087-1098. doi: 10.1044/2018_JSLHR-H-ASCC7-18-0133.
9
The search for noise-induced cochlear synaptopathy in humans: Mission impossible?
Hear Res. 2019 Jun;377:88-103. doi: 10.1016/j.heares.2019.02.016. Epub 2019 Mar 9.
10
Reliability and interrelations of seven proxy measures of cochlear synaptopathy.
Hear Res. 2019 Apr;375:34-43. doi: 10.1016/j.heares.2019.01.018. Epub 2019 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验