Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France.
Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France.
Neuroimage. 2021 May 1;231:117853. doi: 10.1016/j.neuroimage.2021.117853. Epub 2021 Feb 11.
The ability to access brain information in real-time is crucial both for a better understanding of cognitive functions and for the development of therapeutic applications based on brain-machine interfaces. Great success has been achieved in the field of neural motor prosthesis. Progress is still needed in the real-time decoding of higher-order cognitive processes such as covert attention. Recently, we showed that we can track the location of the attentional spotlight using classification methods applied to prefrontal multi-unit activity (MUA) in the non-human primates. Importantly, we demonstrated that the decoded (x,y) attentional spotlight parametrically correlates with the behavior of the monkeys thus validating our decoding of attention. We also demonstrate that this spotlight is extremely dynamic. Here, in order to get closer to non-invasive decoding applications, we extend our previous work to local field potential signals (LFP). Specifically, we achieve, for the first time, high decoding accuracy of the (x,y) location of the attentional spotlight from prefrontal LFP signals, to a degree comparable to that achieved from MUA signals, and we show that this LFP content is predictive of behavior. This LFP attention-related information is maximal in the gamma band (30-250 Hz), peaking between 60 to 120 Hz. In addition, we introduce a novel two-step decoding procedure based on the labelling of maximally attention-informative trials during the decoding procedure. This procedure strongly improves the correlation between our real-time MUA and LFP based decoding and behavioral performance, thus further refining the functional relevance of this real-time decoding of the (x,y) locus of attention. This improvement is more marked for LFP signals than for MUA signals. Overall, this study demonstrates that the attentional spotlight can be accessed from LFP frequency content, in real-time, and can be used to drive high-information content cognitive brain-machine interfaces for the development of new therapeutic strategies.
实时获取大脑信息对于更好地理解认知功能以及基于脑机接口开发治疗应用至关重要。在神经运动假肢领域已经取得了巨大的成功。在实时解码更高阶的认知过程,如内隐注意方面,仍需要取得进展。最近,我们表明,我们可以使用分类方法来追踪注意焦点的位置,该方法应用于非人类灵长类动物的前额叶多单位活动(MUA)。重要的是,我们证明解码的(x,y)注意力焦点与猴子的行为参数相关,从而验证了我们对注意力的解码。我们还证明了这种焦点是非常动态的。在这里,为了更接近非侵入性解码应用,我们将之前的工作扩展到局部场电位信号(LFP)。具体来说,我们首次实现了从前额叶 LFP 信号中高解码精度的(x,y)注意力焦点位置,其程度可与从 MUA 信号中获得的解码精度相媲美,并证明了该 LFP 内容可预测行为。这种与注意力相关的 LFP 信息在伽马频段(30-250 Hz)中最大,在 60 到 120 Hz 之间达到峰值。此外,我们引入了一种新的两步解码程序,该程序基于在解码过程中标记最大注意力信息量的试验。该程序大大提高了我们基于实时 MUA 和 LFP 的解码与行为表现之间的相关性,从而进一步提高了实时解码注意力(x,y)轨迹的功能相关性。对于 LFP 信号而言,这种改进比 MUA 信号更为显著。总体而言,这项研究表明,注意力焦点可以从前额叶 LFP 频率内容中实时获取,并且可以用于驱动具有高信息含量的认知脑机接口,以开发新的治疗策略。