Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, MS029, 415 South St., Waltham, MA, 02453, United States.
Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610-0245, United States.
DNA Repair (Amst). 2021 Apr;100:103006. doi: 10.1016/j.dnarep.2020.103006. Epub 2021 Feb 2.
Efficient and faithful replication of DNA is essential for all organisms. However, the replication fork frequently encounters barriers that need to be overcome to ensure cell survival and genetic stability. Cells must carefully balance and regulate replication vs. repair reactions. In Escherichia coli, the replisome consists of the DNA polymerase III holoenzyme, including DNA polymerase, proofreading exonuclease, processivity clamp and clamp loader, as well as a fork helicase, DnaB and primase, DnaG. We provide evidence here that one component of the clamp loader complex, HolC (or χ) plays a dual role via its ability to form 2 mutually exclusive complexes: one with HolD (or ψ) that recruits the clamp-loader and hence the DNA polymerase holoenzyme and another with helicase-like YoaA protein, a DNA-damage inducible repair protein. By yeast 2 hybrid analysis, we show that two residues of HolC, F64 and W57, at the interface in the structure with HolD, are required for interaction with HolD and for interaction with YoaA. Mutation of these residues does not interfere with HolC's interaction with single-strand DNA binding protein, SSB. In vivo, these mutations fail to complement the poor growth and sensitivity to azidothymidine, a chain-terminating replication inhibitor. In support of the notion that these are exclusive complexes, co-expression of HolC, HolD and YoaA, followed by pulldown of YoaA, yields a complex with HolC but not HolD. YoaA fails to pulldown HolC-F64A. We hypothesize that HolC, by binding with SSB, can recruit the DNA polymerase III holoenzyme through HolD, or an alternative repair complex with YoaA helicase.
DNA 的高效和忠实复制对所有生物体都是至关重要的。然而,复制叉经常遇到需要克服的障碍,以确保细胞存活和遗传稳定性。细胞必须仔细平衡和调节复制与修复反应。在大肠杆菌中,复制体由 DNA 聚合酶 III 全酶组成,包括 DNA 聚合酶、校对外切酶、持续合成夹和夹装载器,以及叉解旋酶 DnaB 和引物酶 DnaG。我们在这里提供证据表明,夹装载器复合物的一个组成部分 HolC(或 χ)通过其形成 2 个相互排斥的复合物的能力发挥双重作用:一个与 HolD(或 ψ)形成复合物,招募夹装载器,从而招募 DNA 聚合酶全酶,另一个与类似解旋酶的 YoaA 蛋白形成复合物,YoaA 是一种 DNA 损伤诱导修复蛋白。通过酵母 2 杂交分析,我们表明 HolC 与 HolD 相互作用以及与 YoaA 相互作用所需的两个残基 F64 和 W57 位于与 HolD 的结构界面上。这些残基的突变不干扰 HolC 与单链 DNA 结合蛋白 SSB 的相互作用。在体内,这些突变不能弥补生长不良和对叠氮胸苷(一种链终止复制抑制剂)的敏感性。支持这些是排他复合物的观点是,共表达 HolC、HolD 和 YoaA,然后下拉 YoaA,得到与 HolC 但不与 HolD 形成复合物的 YoaA。YoaA 不能下拉 HolC-F64A。我们假设 HolC 通过与 SSB 结合,可以通过 HolD 或与 YoaA 解旋酶形成的替代修复复合物来招募 DNA 聚合酶 III 全酶。