Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain.
Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):7825-7838. doi: 10.1021/acsami.0c16871. Epub 2021 Feb 14.
Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients. An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells. However, low colloidal stability and limited enzyme entrapment efficiency could hinder the further pharmaceutical development and the clinical translation of these nanoformulations. Herein, the incorporation of the cationic miristalkonium chloride (MKC) surfactant to RGD nanovesicles is explored, comparing two different nanosystems-quatsomes and hybrid liposomes. In both systems, the positive surface charge introduced by MKC promotes electrostatic interactions between the enzyme and the nanovesicles, improving the loading capacity and colloidal stability. The presence of high MKC content in quatsomes practically abolishes GLA enzymatic activity, while low concentrations of the surfactant in hybrid liposomes stabilize the enzyme without compromising its activity. Moreover, hybrid liposomes show improved efficacy in cell cultures and a good in vitro/in vivo safety profile, ensuring their future preclinical and clinical development.
法布瑞氏病是一种罕见的溶酶体贮积病,其特征在于缺乏α-半乳糖苷酶 A(GLA),一种溶酶体水解酶。给予裸 GLA 的酶替代治疗显示出一些缺点,包括生物分布不佳、疗效有限以及法布瑞氏病患者的相对较高免疫原性。克服这些问题的一种有吸引力的策略是使用纳米载体来包封酶。用 RGD 肽功能化的纳米脂质体已成为保护和将 GLA 递送至内皮细胞的良好平台。然而,低胶体稳定性和有限的酶包封效率可能会阻碍这些纳米制剂的进一步药物开发和临床转化。在此,探索了将阳离子肉豆蔻烷氯化物(MKC)表面活性剂掺入 RGD 纳米囊泡中,比较了两种不同的纳米系统-夸特姆和混合脂质体。在这两种系统中,MKC 引入的正表面电荷促进了酶与纳米囊泡之间的静电相互作用,提高了载药量和胶体稳定性。夸特姆中高含量的 MKC 实际上会使 GLA 酶活性丧失,而混合脂质体中低浓度的表面活性剂可稳定酶而不损害其活性。此外,混合脂质体在细胞培养中显示出更好的疗效,并且具有良好的体外/体内安全性特征,确保了它们未来的临床前和临床开发。