Materials Research and Technology (MRT) Department, Luxembourg Institute of Technology, 41, Rue du Brill, Belvaux L-4422, Luxembourg.
Laboratory Light, Nanomaterials & Nanotechnologies - L2n, University of Technology of Troyes and CNRS ERL 7004, 12 rue Marie Curie, 10000 Troyes, France.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):9113-9121. doi: 10.1021/acsami.0c17929. Epub 2021 Feb 14.
Electromagnetic hot-spots at ultranarrow plasmonic nanogaps carry immense potential to drive detection limits down to few molecules in sensors based on surface-enhanced Raman or fluorescence spectroscopies. However, leveraging the EM hot-spots requires access to the gaps, which in turn depends on the size of the analyte in relation to gap distances. Herein, we leverage a well-calibrated process based on self-assembly of block copolymer colloids on a full-wafer level to produce high-density plasmonic nanopillar arrays exhibiting a large number (>10 cm) of uniform interpillar EM hot-spots. The approach allows convenient handles to systematically vary the interpillar gap distances down to a sub-10 nm regime. The results show compelling trends of the impact of analyte dimensions in relation to the gap distances toward their leverage over interpillar hot-spots and the resulting sensitivity in SERS-based molecular assays. Comparing the detection of labeled proteins in surface-enhanced Raman and metal-enhanced fluorescence configurations further reveal the relative advantage of fluorescence over Raman detection while encountering the spatial limitations imposed by the gaps. Quantitative assays with limits of detection down to picomolar concentrations are realized for both small organic molecules and proteins. The well-defined geometries delivered by a nanofabrication approach are critical to arriving at realistic geometric models to establish meaningful correlation between the structure, optical properties, and sensitivity of nanopillar arrays in plasmonic assays. The findings emphasize the need for the rational design of EM hot-spots that takes into account the analyte dimensions to drive ultrahigh sensitivity in plasmon-enhanced spectroscopies.
在基于表面增强拉曼或荧光光谱学的传感器中,超窄等离子体纳米间隙中的电磁热点具有将检测极限降低到仅几个分子的巨大潜力。然而,利用 EM 热点需要能够接触到间隙,而这反过来又取决于与间隙距离相关的分析物的大小。在本文中,我们利用了一种经过良好校准的工艺,该工艺基于嵌段共聚物胶体在整个晶圆级上的自组装,以生产出高密度等离子体纳米柱阵列,这些阵列具有大量 (>10 cm) 的均匀柱间 EM 热点。该方法提供了方便的处理手段,可以系统地将柱间间隙距离减小到亚 10nm 的范围。结果显示了分析物尺寸与间隙距离之间相互作用的引人注目的趋势,以及它们对柱间热点的利用和基于 SERS 的分子分析中的灵敏度的影响。将表面增强拉曼和金属增强荧光配置中标记蛋白的检测进行比较,进一步揭示了在遇到由间隙施加的空间限制时,荧光检测相对于拉曼检测的相对优势。对于小分子有机分子和蛋白质,都实现了检测限低至皮摩尔浓度的定量分析。通过纳米制造方法提供的良好定义的几何形状对于建立具有实际意义的几何模型至关重要,该模型可以在等离子体分析中建立纳米柱阵列的结构、光学性质和灵敏度之间的有意义的相关性。研究结果强调了需要对 EM 热点进行合理设计,考虑分析物的尺寸,以在等离子体增强光谱学中实现超高灵敏度。