Suppr超能文献

工程化纳米颗粒簇阵列在反射衬底上的电磁热点用于(生物)分子分析物的高灵敏度检测。

Engineering Electromagnetic Hot-Spots in Nanoparticle Cluster Arrays on Reflective Substrates for Highly Sensitive Detection of (Bio)molecular Analytes.

机构信息

MRT Department, Luxembourg Institute of Technology, 41, Rue du Brill, Belvaux L-4422, Luxembourg.

Laboratory Light, Nanomaterials and Nanotechnologies-L2n, University of Technology of Troyes and CNRS ERL 7004, 12 rue Marie Curie, Troyes 10000, France.

出版信息

ACS Appl Mater Interfaces. 2021 Jul 21;13(28):32653-32661. doi: 10.1021/acsami.1c01953. Epub 2021 Jul 9.

Abstract

Intense electromagnetic (EM) hot-spots arising at the junctions or gaps in plasmonic nanoparticle assemblies can drive ultrahigh sensitivity in molecular detection by surface-enhanced spectroscopies. Harnessing this potential however requires access to the confined physical space at the EM hot-spots, which is a challenge for larger analytes such as biomolecules. Here, we demonstrate self-assembly derived gold nanoparticle cluster arrays (NCAs) on gold substrates exhibiting controlled interparticle (<1 nm wide) and intercluster (<10 nm wide) hot-spots as highly promising in this direction. Sensitivity of the NCAs toward detection of small (<1 nm) or large (protein-receptor interactions) analytes in surface-enhanced Raman and metal-enhanced fluorescence assays is found to be strongly impacted by the size of the cluster and the presence of reflective substrates. Experiments supported by numerical simulations attribute the higher sensitivity to higher EM field enhancements at the hot-spots, as well as greater analyte leverage over EM hot-spots. The best-performing arrays could push the sensitivity down to picomolar detection limits for sub-nanometric organic analytes as well as large protein analytes. The investigation paves the way for rational design of plasmonic biosensors and highlights the unique capabilities of a molecular self-assembly approach toward catering to this objective.

摘要

在等离子体纳米粒子组装体的连接处或间隙处产生的强电磁场(EM)热点,可以通过表面增强光谱法驱动分子检测的超高灵敏度。然而,要利用这种潜力,就需要接近 EM 热点处的受限物理空间,而这对于生物分子等较大的分析物来说是一个挑战。在这里,我们展示了在金衬底上自组装得到的金纳米粒子簇阵列(NCAs),其具有可控的粒子间(<1nm 宽)和簇间(<10nm 宽)热点,在这方面极具前景。NCAs 在表面增强拉曼和金属增强荧光分析中对小(<1nm)或大(蛋白质-受体相互作用)分析物的检测灵敏度强烈依赖于簇的大小和反射衬底的存在。实验和数值模拟都表明,较高的灵敏度归因于热点处较强的电磁场增强,以及在 EM 热点处对分析物的更大控制。表现最好的阵列可以将灵敏度降低到皮摩尔级,用于检测亚纳米级有机分析物和大型蛋白质分析物。该研究为等离子体生物传感器的合理设计铺平了道路,并突出了分子自组装方法在满足这一目标方面的独特能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验