Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, The Netherlands.
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA.
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200095. doi: 10.1098/rsta.2020.0095. Epub 2021 Feb 15.
The radiative transfer equations are well known, but radiation parametrizations in atmospheric models are computationally expensive. A promising tool for accelerating parametrizations is the use of machine learning techniques. In this study, we develop a machine learning-based parametrization for the gaseous optical properties by training neural networks to emulate a modern radiation parametrization (RRTMGP). To minimize computa- tional costs, we reduce the range of atmospheric conditions for which the neural networks are applicable and use machine-specific optimized BLAS functions to accelerate matrix computations. To generate training data, we use a set of randomly perturbed atmospheric profiles and calculate optical properties using RRTMGP. Predicted optical properties are highly accurate and the resulting radiative fluxes have average errors within 0.5 W m compared to RRTMGP. Our neural network-based gas optics parametrization is up to four times faster than RRTMGP, depending on the size of the neural networks. We further test the trade-off between speed and accuracy by training neural networks for the narrow range of atmospheric conditions of a single large-eddy simulation, so smaller and therefore faster networks can achieve a desired accuracy. We conclude that our machine learning-based parametrization can speed-up radiative transfer computations while retaining high accuracy. This article is part of the theme issue 'Machine learning for weather and climate modelling'.
辐射传输方程是众所周知的,但大气模式中的辐射参数化计算成本很高。一种有前途的加速参数化的工具是使用机器学习技术。在这项研究中,我们通过训练神经网络来模拟现代辐射参数化(RRTMGP),开发了一种基于机器学习的气体光学性质参数化方法。为了最小化计算成本,我们缩小了神经网络适用的大气条件范围,并使用特定于机器的优化 BLAS 函数来加速矩阵计算。为了生成训练数据,我们使用一组随机扰动的大气廓线,并使用 RRTMGP 计算光学性质。预测的光学性质非常准确,生成的辐射通量与 RRTMGP 的平均误差在 0.5 W/m 以内。我们的基于神经网络的气体光学参数化方法比 RRTMGP 快 4 倍,具体取决于神经网络的大小。我们进一步通过为单个大涡模拟的狭窄大气条件范围训练神经网络来测试速度和准确性之间的权衡,因此较小且因此更快的网络可以达到所需的准确性。我们的结论是,我们的基于机器学习的参数化方法可以在保持高精度的同时加速辐射传输计算。本文是“天气和气候建模中的机器学习”主题特刊的一部分。