Suppr超能文献

用于天气和气候的机器学习有着天壤之别。

Machine learning for weather and climate are worlds apart.

作者信息

Watson-Parris D

机构信息

Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200098. doi: 10.1098/rsta.2020.0098. Epub 2021 Feb 15.

Abstract

Modern weather and climate models share a common heritage and often even components; however, they are used in different ways to answer fundamentally different questions. As such, attempts to emulate them using machine learning should reflect this. While the use of machine learning to emulate weather forecast models is a relatively new endeavour, there is a rich history of climate model emulation. This is primarily because while weather modelling is an initial condition problem, which intimately depends on the current state of the atmosphere, climate modelling is predominantly a boundary condition problem. To emulate the response of the climate to different drivers therefore, representation of the full dynamical evolution of the atmosphere is neither necessary, or in many cases, desirable. Climate scientists are typically interested in different questions also. Indeed emulating the steady-state climate response has been possible for many years and provides significant speed increases that allow solving inverse problems for e.g. parameter estimation. Nevertheless, the large datasets, non-linear relationships and limited training data make climate a domain which is rich in interesting machine learning challenges. Here, I seek to set out the current state of climate model emulation and demonstrate how, despite some challenges, recent advances in machine learning provide new opportunities for creating useful statistical models of the climate. This article is part of the theme issue 'Machine learning for weather and climate modelling'.

摘要

现代天气和气候模型有着共同的起源,甚至常常有相同的组件;然而,它们被用于不同的方式来回答根本不同的问题。因此,使用机器学习来模拟它们的尝试应该反映这一点。虽然使用机器学习来模拟天气预报模型是一项相对较新的努力,但气候模型模拟有着丰富的历史。这主要是因为虽然天气建模是一个初始条件问题,它紧密依赖于大气的当前状态,但气候建模主要是一个边界条件问题。因此,为了模拟气候对不同驱动因素的响应,大气的完整动力学演化的表示既不必要,在许多情况下也不可取。气候科学家通常也对不同的问题感兴趣。事实上,多年来模拟稳态气候响应一直是可能的,并且能显著提高速度,从而可以解决例如参数估计等反问题。然而,大数据集、非线性关系和有限的训练数据使得气候成为一个充满有趣机器学习挑战的领域。在这里,我试图阐述气候模型模拟的当前状态,并展示尽管存在一些挑战,但机器学习的最新进展为创建有用的气候统计模型提供了新的机会。本文是“用于天气和气候建模的机器学习”主题特刊的一部分。

相似文献

1
Machine learning for weather and climate are worlds apart.用于天气和气候的机器学习有着天壤之别。
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200098. doi: 10.1098/rsta.2020.0098. Epub 2021 Feb 15.
2
Physics-informed machine learning: case studies for weather and climate modelling.物理信息机器学习:天气和气候建模案例研究。
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200093. doi: 10.1098/rsta.2020.0093. Epub 2021 Feb 15.
5
Combining data assimilation and machine learning to infer unresolved scale parametrization.结合数据同化和机器学习来推断未解析尺度参数化。
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200086. doi: 10.1098/rsta.2020.0086. Epub 2021 Feb 15.
6
Deep learning for post-processing ensemble weather forecasts.用于后处理集合天气预报的深度学习
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200092. doi: 10.1098/rsta.2020.0092. Epub 2021 Feb 15.
7
Can deep learning beat numerical weather prediction?深度学习能打败数值天气预报吗?
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200097. doi: 10.1098/rsta.2020.0097. Epub 2021 Feb 15.
10

本文引用的文献

3
The frontier of simulation-based inference.基于模拟的推断前沿。
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30055-30062. doi: 10.1073/pnas.1912789117. Epub 2020 May 29.
6
Deep learning to represent subgrid processes in climate models.深度学习在气候模型中表示次网格过程。
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9684-9689. doi: 10.1073/pnas.1810286115. Epub 2018 Sep 6.
9
The quiet revolution of numerical weather prediction.数值天气预报的悄然变革。
Nature. 2015 Sep 3;525(7567):47-55. doi: 10.1038/nature14956.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验