Suppr超能文献

分数引导的结构方程模型树

Score-Guided Structural Equation Model Trees.

作者信息

Arnold Manuel, Voelkle Manuel C, Brandmaier Andreas M

机构信息

Psychological Research Methods, Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.

Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.

出版信息

Front Psychol. 2021 Jan 28;11:564403. doi: 10.3389/fpsyg.2020.564403. eCollection 2020.

Abstract

Structural equation model (SEM) trees are data-driven tools for finding variables that predict group differences in SEM parameters. SEM trees build upon the decision tree paradigm by growing tree structures that divide a data set recursively into homogeneous subsets. In past research, SEM trees have been estimated predominantly with the R package semtree. The original algorithm in the semtree package selects split variables among covariates by calculating a likelihood ratio for each possible split of each covariate. Obtaining these likelihood ratios is computationally demanding. As a remedy, we propose to guide the construction of SEM trees by a family of score-based tests that have recently been popularized in psychometrics (Merkle and Zeileis, 2013; Merkle et al., 2014). These score-based tests monitor fluctuations in case-wise derivatives of the likelihood function to detect parameter differences between groups. Compared to the likelihood-ratio approach, score-based tests are computationally efficient because they do not require refitting the model for every possible split. In this paper, we introduce score-guided SEM trees, implement them in semtree, and evaluate their performance by means of a Monte Carlo simulation.

摘要

结构方程模型(SEM)树是一种数据驱动工具,用于寻找能够预测SEM参数中组间差异的变量。SEM树基于决策树范式构建,通过生长树结构将数据集递归划分为同质子集。在过去的研究中,SEM树主要使用R包semtree进行估计。semtree包中的原始算法通过计算每个协变量的每个可能分割的似然比,在协变量中选择分割变量。获取这些似然比的计算量很大。作为一种补救措施,我们建议通过最近在心理测量学中流行的一类基于分数的检验来指导SEM树的构建(Merkle和Zeileis,2013;Merkle等人,2014)。这些基于分数的检验监测似然函数的逐案导数的波动,以检测组间的参数差异。与似然比方法相比,基于分数的检验计算效率更高,因为它们不需要为每个可能的分割重新拟合模型。在本文中,我们介绍了分数引导的SEM树,在semtree中实现了它们,并通过蒙特卡罗模拟评估了它们的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a56/7875879/b91e3d0818a5/fpsyg-11-564403-g001.jpg

相似文献

1
Score-Guided Structural Equation Model Trees.
Front Psychol. 2021 Jan 28;11:564403. doi: 10.3389/fpsyg.2020.564403. eCollection 2020.
2
Structural equation model trees.
Psychol Methods. 2013 Mar;18(1):71-86. doi: 10.1037/a0030001. Epub 2012 Sep 17.
3
Using recursive partitioning to account for parameter heterogeneity in multinomial processing tree models.
Behav Res Methods. 2018 Jun;50(3):1217-1233. doi: 10.3758/s13428-017-0937-z.
4
SEMtree: tree-based structure learning methods with structural equation models.
Bioinformatics. 2023 Jun 1;39(6). doi: 10.1093/bioinformatics/btad377.
5
Network Trees: A Method for Recursively Partitioning Covariance Structures.
Psychometrika. 2020 Dec;85(4):926-945. doi: 10.1007/s11336-020-09731-4. Epub 2020 Nov 4.
6
Theory-guided exploration with structural equation model forests.
Psychol Methods. 2016 Dec;21(4):566-582. doi: 10.1037/met0000090.
7
Subgroup identification using covariate-adjusted interaction trees.
Stat Med. 2019 Sep 20;38(21):3974-3984. doi: 10.1002/sim.8214. Epub 2019 Jun 4.
8
Regression Trees for Longitudinal Data with Baseline Covariates.
Biostat Epidemiol. 2019;3(1):1-22. doi: 10.1080/24709360.2018.1557797. Epub 2018 Dec 31.
9
Predicting Students' Attitudes Toward Collaboration: Evidence From Structural Equation Model Trees and Forests.
Front Psychol. 2021 Mar 26;12:604291. doi: 10.3389/fpsyg.2021.604291. eCollection 2021.
10
Recursive Partitioning with Nonlinear Models of Change.
Multivariate Behav Res. 2018 Jul-Aug;53(4):559-570. doi: 10.1080/00273171.2018.1461602. Epub 2018 Apr 23.

引用本文的文献

3
Investigating heterogeneity in IRTree models for multiple response processes with score-based partitioning.
Br J Math Stat Psychol. 2025 May;78(2):420-439. doi: 10.1111/bmsp.12367. Epub 2024 Nov 4.
4
Latent Variable Forests for Latent Variable Score Estimation.
Educ Psychol Meas. 2024 Dec;84(6):1138-1172. doi: 10.1177/00131644241237502. Epub 2024 Apr 1.
5
Subgroup detection in linear growth curve models with generalized linear mixed model (GLMM) trees.
Behav Res Methods. 2024 Oct;56(7):6759-6780. doi: 10.3758/s13428-024-02389-1. Epub 2024 May 29.
6
Detecting Differential Item Functioning in Multidimensional Graded Response Models With Recursive Partitioning.
Appl Psychol Meas. 2024 May;48(3):83-103. doi: 10.1177/01466216241238743. Epub 2024 Mar 13.

本文引用的文献

1
Network Trees: A Method for Recursively Partitioning Covariance Structures.
Psychometrika. 2020 Dec;85(4):926-945. doi: 10.1007/s11336-020-09731-4. Epub 2020 Nov 4.
3
Reconsidering important outcomes of the nonsuicidal self-injury disorder diagnostic criterion A.
J Clin Psychol. 2019 Jun;75(6):1084-1097. doi: 10.1002/jclp.22754. Epub 2019 Feb 8.
4
Age Differentiation within Gray Matter, White Matter, and between Memory and White Matter in an Adult Life Span Cohort.
J Neurosci. 2018 Jun 20;38(25):5826-5836. doi: 10.1523/JNEUROSCI.1627-17.2018. Epub 2018 May 30.
5
Tree-Based Global Model Tests for Polytomous Rasch Models.
Educ Psychol Meas. 2018 Feb;78(1):128-166. doi: 10.1177/0013164416664394. Epub 2016 Oct 6.
6
A Comparison of Methods for Uncovering Sample Heterogeneity: Structural Equation Model Trees and Finite Mixture Models.
Struct Equ Modeling. 2017;24(2):270-282. doi: 10.1080/10705511.2016.1250637. Epub 2016 Dec 7.
7
Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation.
Psychometrika. 2018 Mar;83(1):132-155. doi: 10.1007/s11336-017-9591-8. Epub 2017 Nov 17.
8
Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees.
Behav Res Methods. 2018 Oct;50(5):2016-2034. doi: 10.3758/s13428-017-0971-x.
9
Using recursive partitioning to account for parameter heterogeneity in multinomial processing tree models.
Behav Res Methods. 2018 Jun;50(3):1217-1233. doi: 10.3758/s13428-017-0937-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验