Suppr超能文献

多分类Rasch模型的基于树的全局模型检验

Tree-Based Global Model Tests for Polytomous Rasch Models.

作者信息

Komboz Basil, Strobl Carolin, Zeileis Achim

机构信息

Ludwig-Maximilians-Universität München, München, Germany.

Universität Zürich, Zürich, Switzerland.

出版信息

Educ Psychol Meas. 2018 Feb;78(1):128-166. doi: 10.1177/0013164416664394. Epub 2016 Oct 6.

Abstract

Psychometric measurement models are only valid if measurement invariance holds between test takers of different groups. Global model tests, such as the well-established likelihood ratio (LR) test, are sensitive to violations of measurement invariance, such as differential item functioning and differential step functioning. However, these traditional approaches are only applicable when comparing previously specified reference and focal groups, such as males and females. Here, we propose a new framework for global model tests for polytomous Rasch models based on a model-based recursive partitioning algorithm. With this approach, a priori specification of reference and focal groups is no longer necessary, because they are automatically detected in a data-driven way. The statistical background of the new framework is introduced along with an instructive example. A series of simulation studies illustrates and compares its statistical properties to the well-established LR test. While both the LR test and the new framework are sensitive to differential item functioning and differential step functioning and respect a given significance level regardless of true differences in the ability distributions, the new data-driven approach is more powerful when the group structure is not known a priori-as will usually be the case in practical applications. The usage and interpretation of the new method are illustrated in an empirical application example. A software implementation is freely available in the R system for statistical computing.

摘要

心理测量模型只有在不同群体的测试者之间测量不变性成立时才有效。全局模型检验,如成熟的似然比(LR)检验,对测量不变性的违反很敏感,如项目功能差异和步长功能差异。然而,这些传统方法仅适用于比较先前指定的参考组和焦点组,如男性和女性。在此,我们基于基于模型的递归划分算法,为多分类Rasch模型的全局模型检验提出了一个新框架。通过这种方法,不再需要先验指定参考组和焦点组,因为它们是以数据驱动的方式自动检测出来的。新框架的统计背景与一个指导性示例一起介绍。一系列模拟研究说明了新框架的统计特性,并将其与成熟的LR检验进行了比较。虽然LR检验和新框架对项目功能差异和步长功能差异都很敏感,并且无论能力分布的真实差异如何都尊重给定的显著性水平,但当群体结构不是先验已知时(实际应用中通常如此),新的数据驱动方法更强大。在一个实证应用示例中说明了新方法的使用和解释。在R统计计算系统中可免费获得该方法的软件实现。

相似文献

1
Tree-Based Global Model Tests for Polytomous Rasch Models.多分类Rasch模型的基于树的全局模型检验
Educ Psychol Meas. 2018 Feb;78(1):128-166. doi: 10.1177/0013164416664394. Epub 2016 Oct 6.
4
An R toolbox for score-based measurement invariance tests in IRT models.IRT 模型中基于评分的测量不变性检验的 R 工具箱。
Behav Res Methods. 2022 Oct;54(5):2101-2113. doi: 10.3758/s13428-021-01689-0. Epub 2021 Dec 16.
6
Polytomous Item Explanatory Item Response Theory Models.多分类项目解释性项目反应理论模型
Educ Psychol Meas. 2020 Aug;80(4):726-755. doi: 10.1177/0013164419892667. Epub 2019 Dec 13.
10
An Evaluation of Overall Goodness-of-Fit Tests for the Rasch Model.拉施模型整体拟合优度检验的评估
Front Psychol. 2019 Jan 10;9:2710. doi: 10.3389/fpsyg.2018.02710. eCollection 2018.

引用本文的文献

5
Latent Variable Forests for Latent Variable Score Estimation.用于潜在变量得分估计的潜在变量森林
Educ Psychol Meas. 2024 Dec;84(6):1138-1172. doi: 10.1177/00131644241237502. Epub 2024 Apr 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验