Debelak Rudolf, Meiser Thorsten, Gernand Alicia
University of Zurich, Zurich, Switzerland.
University of Mannheim, Mannheim, Germany.
Br J Math Stat Psychol. 2025 May;78(2):420-439. doi: 10.1111/bmsp.12367. Epub 2024 Nov 4.
Item response tree (IRTree) models form a family of psychometric models that allow researchers to control for multiple response processes, such as different sorts of response styles, in the measurement of latent traits. While IRTree models can capture quantitative individual differences in both the latent traits of interest and the use of response categories, they maintain the basic assumption that the nature and weighting of latent response processes are homogeneous across the entire population of respondents. In the present research, we therefore propose a novel approach for detecting heterogeneity in the parameters of IRTree models across subgroups that engage in different response behavior. The approach uses score-based tests to reveal violations of parameter heterogeneity along extraneous person covariates, and it can be employed as a model-based partitioning algorithm to identify sources of differences in the strength of trait-based responding or other response processes. Simulation studies demonstrate generally accurate Type I error rates and sufficient power for metric, ordinal, and categorical person covariates and for different types of test statistics, with the potential to differentiate between different types of parameter heterogeneity. An empirical application illustrates the use of score-based partitioning in the analysis of latent response processes with real data.
项目反应树(IRTree)模型构成了一类心理测量模型,使研究人员在测量潜在特质时能够控制多种反应过程,如不同类型的反应风格。虽然IRTree模型可以捕捉感兴趣的潜在特质和反应类别使用方面的个体定量差异,但它们仍维持一个基本假设,即潜在反应过程的性质和权重在整个受访者群体中是同质的。因此,在本研究中,我们提出了一种新颖的方法,用于检测参与不同反应行为的亚组间IRTree模型参数的异质性。该方法使用基于分数的检验来揭示沿无关个体协变量的参数异质性违反情况,并且它可以用作基于模型的划分算法,以识别基于特质的反应强度或其他反应过程差异的来源。模拟研究表明,对于度量、有序和分类个体协变量以及不同类型的检验统计量,I类错误率总体上准确,且具有足够的功效,有区分不同类型参数异质性的潜力。一个实证应用说明了基于分数的划分在实际数据分析潜在反应过程中的使用。