文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

极地鞭毛糖基化研究:基因组特征及一种特定糖基转移酶(Fgi-1)在异质性鞭毛糖基化中的作用

Polar Flagella Glycosylation in : Genomic Characterization and Involvement of a Specific Glycosyltransferase (Fgi-1) in Heterogeneous Flagella Glycosylation.

作者信息

Forn-Cuní Gabriel, Fulton Kelly M, Smith Jeffrey C, Twine Susan M, Mendoza-Barberà Elena, Tomás Juan M, Merino Susana

机构信息

Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain.

National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada.

出版信息

Front Microbiol. 2021 Jan 18;11:595697. doi: 10.3389/fmicb.2020.595697. eCollection 2020.


DOI:10.3389/fmicb.2020.595697
PMID:33584564
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7874193/
Abstract

Polar flagella from mesophilic strains have previously been shown to be modified with a range of glycans. Mass spectrometry studies of purified polar flagellins suggested the glycan typically includes a putative pseudaminic acid like derivative; while some strains are modified with this single monosaccharide, others modified with a heterologous glycan. In the current study, we demonstrate that genes involved in polar flagella glycosylation are clustered in highly polymorphic genomic islands flanked by pseudaminic acid biosynthetic genes (). Bioinformatic analysis of mesophilic genomes identified three types of polar flagella glycosylation islands (FGIs), denoted Group I, II and III. FGI Groups I and III are small genomic islands present in strains with flagellins modified with a single monosaccharide pseudaminic acid derivative. Group II were large genomic islands, present in strains found to modify polar flagellins with heterogeneous glycan moieties. Group II, in addition to genes, contained numerous glycosyltransferases and other biosynthetic enzymes. All Group II strains shared a common glycosyltransferase downstream of that we named flagella glycosylation island 1, , in AH-3. We demonstrate that Fgi-1 transfers the first sugar of the heterogeneous glycan to the pseudaminic acid derivative linked to polar flagellins and could be used as marker for polysaccharidic glycosylation of polar flagella.

摘要

嗜温菌株的极鞭毛先前已被证明会被一系列聚糖修饰。对纯化的极鞭毛蛋白进行的质谱研究表明,聚糖通常包括一种假定的类假氨基糖衍生物;虽然一些菌株仅被这种单糖修饰,但其他菌株则被异源聚糖修饰。在本研究中,我们证明参与极鞭毛糖基化的基因聚集在高度多态的基因组岛中,这些基因组岛两侧是假氨基糖生物合成基因()。对嗜温菌基因组的生物信息学分析确定了三种类型的极鞭毛糖基化岛(FGIs),分别命名为I组、II组和III组。FGI的I组和III组是小基因组岛,存在于鞭毛蛋白被单糖假氨基糖衍生物修饰的菌株中。II组是大基因组岛,存在于被发现用异源聚糖部分修饰极鞭毛蛋白的菌株中。II组除了基因外,还包含许多糖基转移酶和其他生物合成酶。所有II组菌株在AH-3的基因下游共享一种共同的糖基转移酶,我们将其命名为鞭毛糖基化岛1(Fgi-1)。我们证明Fgi-1将异源聚糖的第一个糖转移到与极鞭毛蛋白相连的假氨基糖衍生物上,并且可以用作嗜温菌极鞭毛多糖糖基化的标记。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/f0543a36dccc/fmicb-11-595697-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/28eb6c4ebc37/fmicb-11-595697-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/ffb15baa96e9/fmicb-11-595697-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/cbd1c6bfaf8f/fmicb-11-595697-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/eb0a6674ef7b/fmicb-11-595697-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/bdfeed928d36/fmicb-11-595697-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/a425754b93e1/fmicb-11-595697-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/9a0177685da5/fmicb-11-595697-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/2179184d73d5/fmicb-11-595697-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/51f5282e5232/fmicb-11-595697-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/f0543a36dccc/fmicb-11-595697-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/28eb6c4ebc37/fmicb-11-595697-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/ffb15baa96e9/fmicb-11-595697-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/cbd1c6bfaf8f/fmicb-11-595697-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/eb0a6674ef7b/fmicb-11-595697-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/bdfeed928d36/fmicb-11-595697-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/a425754b93e1/fmicb-11-595697-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/9a0177685da5/fmicb-11-595697-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/2179184d73d5/fmicb-11-595697-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/51f5282e5232/fmicb-11-595697-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43af/7874193/f0543a36dccc/fmicb-11-595697-g0010.jpg

相似文献

[1]
Polar Flagella Glycosylation in : Genomic Characterization and Involvement of a Specific Glycosyltransferase (Fgi-1) in Heterogeneous Flagella Glycosylation.

Front Microbiol. 2021-1-18

[2]
Generation of Null Mutants to Elucidate the Role of Bacterial Glycosyltransferases in Bacterial Motility.

J Vis Exp. 2022-3-11

[3]
Polar Glycosylated and Lateral Non-Glycosylated Flagella from Aeromonas hydrophila Strain AH-1 (Serotype O11).

Int J Mol Sci. 2015-11-27

[4]
Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH-3.

J Biol Chem. 2012-6-25

[5]
Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation.

Mol Microbiol. 2002-1

[6]
Heterogeneous glycosylation and methylation of the Aeromonas caviae flagellin.

Microbiologyopen. 2022-8

[7]
An Aeromonas caviae genomic island is required for both O-antigen lipopolysaccharide biosynthesis and flagellin glycosylation.

J Bacteriol. 2009-4

[8]
Identification of a putative glycosyltransferase responsible for the transfer of pseudaminic acid onto the polar flagellin of Aeromonas caviae Sch3N.

Microbiologyopen. 2012-6

[9]
Glycosylate and move! The glycosyltransferase Maf is involved in bacterial flagella formation.

Environ Microbiol. 2017-12-4

[10]
The Aeromonas caviae AHA0618 gene modulates cell length and influences swimming and swarming motility.

Microbiologyopen. 2015-4

引用本文的文献

[1]
A comprehensive review of biosurfactant production and its uses in the pharmaceutical industry.

Arch Microbiol. 2024-1-10

[2]
Prediction and Analysis of Genomic Islands in .

Front Microbiol. 2021-11-29

[3]
Surface Glucan Structures in spp.

Mar Drugs. 2021-11-22

[4]
Structural Studies of the Lipopolysaccharide of bv. Strain K133 Which Represents New Provisional Serogroup PGO1 Prevailing among Mesophilic Aeromonads on Polish Fish Farms.

Int J Mol Sci. 2021-4-20

本文引用的文献

[1]
Not a barrier but a key: How bacteriophages exploit host's O-antigen as an essential receptor to initiate infection.

Mol Microbiol. 2017-8

[2]
Predicting Secretory Proteins with SignalP.

Methods Mol Biol. 2017

[3]
Whole-Genome Sequence of Aeromonas hydrophila Strain AH-1 (Serotype O11).

Genome Announc. 2016-9-1

[4]
Genome Sequence of Aeromonas hydrophila Strain AH-3 (Serotype O34).

Genome Announc. 2016-9-1

[5]
Emerging facets of prokaryotic glycosylation.

FEMS Microbiol Rev. 2017-1

[6]
The FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella.

Front Microbiol. 2016-7-26

[7]
Flashy flagella: flagellin modification is relatively common and highly versatile among the Enterobacteriaceae.

BMC Genomics. 2016-5-20

[8]
Clinical applications of bacterial glycoproteins.

Expert Rev Proteomics. 2016

[9]
Polar Glycosylated and Lateral Non-Glycosylated Flagella from Aeromonas hydrophila Strain AH-1 (Serotype O11).

Int J Mol Sci. 2015-11-27

[10]
The Phyre2 web portal for protein modeling, prediction and analysis.

Nat Protoc. 2015-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索