Suppr超能文献

3044例病例揭示了COVID-19患者重要的预后特征。

3044 Cases reveal important prognosis signatures of COVID-19 patients.

作者信息

Qin Shijie, Li Weiwei, Shi Xuejia, Wu Yanjun, Wang Canbiao, Shen Jiawei, Pang Rongrong, He Bangshun, Zhao Jun, Qiao Qinghua, Luo Tao, Guo Yanju, Yang Yang, Han Ying, Wu Qiuyue, Wu Jian, Dai Wei, Zhang Libo, Chen Liming, Xue Chunyan, Jin Ping, Gan Zhenhua, Ma Fei, Xia Xinyi

机构信息

COVID-19 Research Center, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing Clinical College of Southern Medical University, Nanjing, Jiangsu 210002, China.

Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, Nanjing 210046, China.

出版信息

Comput Struct Biotechnol J. 2021;19:1163-1175. doi: 10.1016/j.csbj.2021.01.042. Epub 2021 Feb 9.

Abstract

Critical patients and intensive care unit (ICU) patients are the main population of COVID-19 deaths. Therefore, establishing a reliable method is necessary for COVID-19 patients to distinguish patients who may have critical symptoms from other patients. In this retrospective study, we firstly evaluated the effects of 54 laboratory indicators on critical illness and death in 3044 COVID-19 patients from the Huoshenshan hospital in Wuhan, China. Secondly, we identify the eight most important prognostic indicators (neutrophil percentage, procalcitonin, neutrophil absolute value, C-reactive protein, albumin, interleukin-6, lymphocyte absolute value and myoglobin) by using the random forest algorithm, and find that dynamic changes of the eight prognostic indicators present significantly distinct within differently clinical severities. Thirdly, our study reveals that a model containing age and these eight prognostic indicators can accurately predict which patients may develop serious illness or death. Fourthly, our results demonstrate that different genders have different critical illness rates compared with different ages, in particular the mortality is more likely to be attributed to some key genes (e.g. ACE2, TMPRSS2 and FURIN) by combining the analysis of public lung single cells and bulk transcriptome data. Taken together, we urge that the prognostic model and first-hand clinical trial data generated in this study have important clinical practical significance for predicting and exploring the disease progression of COVID-19 patients.

摘要

重症患者和重症监护病房(ICU)患者是新冠病毒病死亡的主要人群。因此,建立一种可靠的方法对于新冠病毒病患者区分可能出现重症症状的患者和其他患者很有必要。在这项回顾性研究中,我们首先评估了54项实验室指标对来自中国武汉火神山医院的3044例新冠病毒病患者重症和死亡的影响。其次,我们使用随机森林算法确定了八个最重要的预后指标(中性粒细胞百分比、降钙素原、中性粒细胞绝对值、C反应蛋白、白蛋白、白细胞介素-6、淋巴细胞绝对值和肌红蛋白),并发现这八个预后指标的动态变化在不同临床严重程度之间存在显著差异。第三,我们的研究表明,一个包含年龄和这八个预后指标的模型可以准确预测哪些患者可能发展为重症或死亡。第四,我们的结果表明,与不同年龄相比,不同性别有不同的重症发生率,特别是通过结合公共肺单细胞和批量转录组数据分析,死亡率更可能归因于一些关键基因(如ACE2、TMPRSS2和FURIN)。综上所述,我们敦促本研究中产生的预后模型和一手临床试验数据对预测和探索新冠病毒病患者的疾病进展具有重要的临床实际意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验