Mun Seong K, Wong Kenneth H, Lo Shih-Chung B, Li Yanni, Bayarsaikhan Shijir
Arlington Innovation Center:Health Research, Virginia Tech-Washington DC Area, Arlington, VA, United States.
Front Mol Biosci. 2021 Jan 28;7:614258. doi: 10.3389/fmolb.2020.614258. eCollection 2020.
Radiology historically has been a leader of digital transformation in healthcare. The introduction of digital imaging systems, picture archiving and communication systems (PACS), and teleradiology transformed radiology services over the past 30 years. Radiology is again at the crossroad for the next generation of transformation, possibly evolving as a one-stop integrated diagnostic service. Artificial intelligence and machine learning promise to offer radiology new powerful new digital tools to facilitate the next transformation. The radiology community has been developing computer-aided diagnosis (CAD) tools based on machine learning (ML) over the past 20 years. Among various AI techniques, deep-learning convolutional neural networks (CNN) and its variants have been widely used in medical image pattern recognition. Since the 1990s, many CAD tools and products have been developed. However, clinical adoption has been slow due to a lack of substantial clinical advantages, difficulties integrating into existing workflow, and uncertain business models. This paper proposes three pathways for AI's role in radiology beyond current CNN based capabilities 1) improve the performance of CAD, 2) improve the productivity of radiology service by AI-assisted workflow, and 3) develop radiomics that integrate the data from radiology, pathology, and genomics to facilitate the emergence of a new integrated diagnostic service.
从历史上看,放射学一直是医疗保健领域数字转型的引领者。在过去30年里,数字成像系统、图像存档与通信系统(PACS)以及远程放射学的引入改变了放射学服务。放射学再次处于下一代转型的十字路口,可能会演变成一站式综合诊断服务。人工智能和机器学习有望为放射学提供强大的新数字工具,以推动下一次转型。在过去20年里,放射学界一直在基于机器学习(ML)开发计算机辅助诊断(CAD)工具。在各种人工智能技术中,深度学习卷积神经网络(CNN)及其变体已被广泛应用于医学图像模式识别。自20世纪90年代以来,已经开发了许多CAD工具和产品。然而,由于缺乏实质性的临床优势、难以融入现有工作流程以及商业模式不确定,临床应用一直很缓慢。本文提出了人工智能在放射学中超越当前基于CNN能力的三种作用途径:1)提高CAD的性能;2)通过人工智能辅助工作流程提高放射学服务的生产力;3)开发整合放射学、病理学和基因组学数据的放射组学,以促进新的综合诊断服务的出现。
Front Mol Biosci. 2021-1-28
Eur J Breast Health. 2023-10-1
J Digit Imaging. 2000-11
Diagnostics (Basel). 2023-8-25
Cardiovasc Intervent Radiol. 2022-3
Eur J Radiol. 2018-6-22
VideoGIE. 2020-11-9
Diagnostics (Basel). 2025-5-29
Front Radiol. 2025-5-23
SSM Qual Res Health. 2025-6
Sci Data. 2025-5-20
Health Technol (Berl). 2025
Bioinformation. 2024-12-31
Diagnostics (Basel). 2025-3-11
Radiol Artif Intell. 2020-11-11
Clin Imaging. 2020-4-23
J Med Imaging (Bellingham). 2020-1
Insights Imaging. 2020-2-10