文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

面向未来放射诊断服务的人工智能

Artificial Intelligence for the Future Radiology Diagnostic Service.

作者信息

Mun Seong K, Wong Kenneth H, Lo Shih-Chung B, Li Yanni, Bayarsaikhan Shijir

机构信息

Arlington Innovation Center:Health Research, Virginia Tech-Washington DC Area, Arlington, VA, United States.

出版信息

Front Mol Biosci. 2021 Jan 28;7:614258. doi: 10.3389/fmolb.2020.614258. eCollection 2020.


DOI:10.3389/fmolb.2020.614258
PMID:33585563
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7875875/
Abstract

Radiology historically has been a leader of digital transformation in healthcare. The introduction of digital imaging systems, picture archiving and communication systems (PACS), and teleradiology transformed radiology services over the past 30 years. Radiology is again at the crossroad for the next generation of transformation, possibly evolving as a one-stop integrated diagnostic service. Artificial intelligence and machine learning promise to offer radiology new powerful new digital tools to facilitate the next transformation. The radiology community has been developing computer-aided diagnosis (CAD) tools based on machine learning (ML) over the past 20 years. Among various AI techniques, deep-learning convolutional neural networks (CNN) and its variants have been widely used in medical image pattern recognition. Since the 1990s, many CAD tools and products have been developed. However, clinical adoption has been slow due to a lack of substantial clinical advantages, difficulties integrating into existing workflow, and uncertain business models. This paper proposes three pathways for AI's role in radiology beyond current CNN based capabilities 1) improve the performance of CAD, 2) improve the productivity of radiology service by AI-assisted workflow, and 3) develop radiomics that integrate the data from radiology, pathology, and genomics to facilitate the emergence of a new integrated diagnostic service.

摘要

从历史上看,放射学一直是医疗保健领域数字转型的引领者。在过去30年里,数字成像系统、图像存档与通信系统(PACS)以及远程放射学的引入改变了放射学服务。放射学再次处于下一代转型的十字路口,可能会演变成一站式综合诊断服务。人工智能和机器学习有望为放射学提供强大的新数字工具,以推动下一次转型。在过去20年里,放射学界一直在基于机器学习(ML)开发计算机辅助诊断(CAD)工具。在各种人工智能技术中,深度学习卷积神经网络(CNN)及其变体已被广泛应用于医学图像模式识别。自20世纪90年代以来,已经开发了许多CAD工具和产品。然而,由于缺乏实质性的临床优势、难以融入现有工作流程以及商业模式不确定,临床应用一直很缓慢。本文提出了人工智能在放射学中超越当前基于CNN能力的三种作用途径:1)提高CAD的性能;2)通过人工智能辅助工作流程提高放射学服务的生产力;3)开发整合放射学、病理学和基因组学数据的放射组学,以促进新的综合诊断服务的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff0d/7875875/9159cc5d98fe/fmolb-07-614258-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff0d/7875875/9159cc5d98fe/fmolb-07-614258-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff0d/7875875/9159cc5d98fe/fmolb-07-614258-g001.jpg

相似文献

[1]
Artificial Intelligence for the Future Radiology Diagnostic Service.

Front Mol Biosci. 2021-1-28

[2]
From Pixels to Pathology: Employing Computer Vision to Decode Chest Diseases in Medical Images.

Cureus. 2023-9-20

[3]
Rogue AI: Cautionary Cases in Neuroradiology and What We Can Learn From Them.

Cureus. 2024-3-17

[4]
Future of Breast Radiology.

Eur J Breast Health. 2023-10-1

[5]
Computers in imaging and health care: now and in the future.

J Digit Imaging. 2000-11

[6]
Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging.

Diagnostics (Basel). 2023-8-25

[7]
Prime Time for Artificial Intelligence in Interventional Radiology.

Cardiovasc Intervent Radiol. 2022-3

[8]
The past, present and future role of artificial intelligence in imaging.

Eur J Radiol. 2018-6-22

[9]
[Artificial Intelligence in radiology : What can be expected in the next few years?].

Radiologe. 2020-1

[10]
Artificial intelligence in gastrointestinal endoscopy.

VideoGIE. 2020-11-9

引用本文的文献

[1]
Artificial intelligence in pancreatic cancer histopathology and diagnostics - implications for clinical decisions and biomarker discovery?

Cell Div. 2025-6-17

[2]
Integrating Radiogenomics and Machine Learning in Musculoskeletal Oncology Care.

Diagnostics (Basel). 2025-5-29

[3]
Use of artificial intelligence in the management of stroke: scoping review.

Front Radiol. 2025-5-23

[4]
A multi-site study of clinician perspectives in the lifecycle of an algorithmic risk prediction tool.

SSM Qual Res Health. 2025-6

[5]
Galar - a large multi-label video capsule endoscopy dataset.

Sci Data. 2025-5-20

[6]
The role of AI in mitigating the impact of radiologist shortages: a systematised review.

Health Technol (Berl). 2025

[7]
Digital pathology: Revolutionizing oral and maxillofacial diagnostics.

Bioinformation. 2024-12-31

[8]
AI-Driven Advances in Low-Dose Imaging and Enhancement-A Review.

Diagnostics (Basel). 2025-3-11

[9]
Trends and Public Perception of Artificial Intelligence in Medical Imaging: A Social Media Analysis.

Cureus. 2024-9-23

[10]
Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors.

Front Radiol. 2024-9-5

本文引用的文献

[1]
The State of Radiology AI: Considerations for Purchase Decisions and Current Market Offerings.

Radiol Artif Intell. 2020-11-11

[2]
Artificial Intelligence in Low- and Middle-Income Countries: Innovating Global Health Radiology.

Radiology. 2020-10-6

[3]
Radiogenomic signatures reveal multiscale intratumour heterogeneity associated with biological functions and survival in breast cancer.

Nat Commun. 2020-9-25

[4]
Understanding artificial intelligence based radiology studies: What is overfitting?

Clin Imaging. 2020-4-23

[5]
The Long Route to Standardized Radiomics: Unraveling the Knot from the End.

Radiology. 2020-5

[6]
The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping.

Radiology. 2020-3-10

[7]
Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms.

JAMA Netw Open. 2020-3-2

[8]
Integrating AI into radiology workflow: levels of research, production, and feedback maturity.

J Med Imaging (Bellingham). 2020-1

[9]
Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine.

Radiol Bras. 2019

[10]
Deep learning workflow in radiology: a primer.

Insights Imaging. 2020-2-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索