Dikici Engin, Bigelow Matthew, Prevedello Luciano M, White Richard D, Erdal Barbaros S
The Ohio State University College of Medicine, Laboratory for Augmented Intelligence in Imaging, Department of Radiology, Columbus, Ohio, United States.
J Med Imaging (Bellingham). 2020 Jan;7(1):016502. doi: 10.1117/1.JMI.7.1.016502. Epub 2020 Feb 11.
We present a roadmap for integrating artificial intelligence (AI)-based image analysis algorithms into existing radiology workflows such that (1) radiologists can significantly benefit from enhanced automation in various imaging tasks due to AI, and (2) radiologists' feedback is utilized to further improve the AI application. This is achieved by establishing three maturity levels where (1) research enables the visualization of AI-based results/annotations by radiologists without generating new patient records; (2) production allows the AI-based system to generate results stored in an institution's picture-archiving and communication system; and (3) feedback equips radiologists with tools for editing the AI inference results for periodic retraining of the deployed AI systems, thereby allowing continuous organic improvement of AI-based radiology-workflow solutions. A case study (i.e., detection of brain metastases with T1-weighted contrast-enhanced three-dimensional MRI) illustrates the deployment details of a particular AI-based application according to the aforementioned maturity levels. It is shown that the given AI application significantly improves with feedback coming from radiologists; the number of incorrectly detected brain metastases (false positives) decreases from 14.2 to 9.12 per patient with the number of subsequently annotated datasets increasing from 93 to 217 as a result of radiologist adjudication.
我们提出了一个路线图,用于将基于人工智能(AI)的图像分析算法集成到现有的放射学工作流程中,以便(1)放射科医生能够因人工智能而在各种成像任务中从增强的自动化中显著受益,以及(2)利用放射科医生的反馈来进一步改进人工智能应用。这通过建立三个成熟度级别来实现,其中(1)研究使放射科医生能够可视化基于人工智能的结果/注释,而无需生成新的患者记录;(2)生产允许基于人工智能的系统生成存储在机构的图像存档和通信系统中的结果;(3)反馈为放射科医生配备编辑人工智能推理结果的工具,以便对部署的人工智能系统进行定期再训练,从而使基于人工智能的放射学工作流程解决方案能够持续自然改进。一个案例研究(即使用T1加权对比增强三维MRI检测脑转移瘤)根据上述成熟度级别说明了特定基于人工智能应用的部署细节。结果表明,随着放射科医生反馈的加入,给定的人工智能应用有显著改进;每位患者错误检测到的脑转移瘤(假阳性)数量从14.2减少到9.12,随后注释的数据集数量因放射科医生的判定从93增加到217。