Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China; Department of Radiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, People's Republic of China.
School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.
Eur J Radiol. 2019 May;114:128-135. doi: 10.1016/j.ejrad.2019.01.003. Epub 2019 Mar 20.
OBJECTIVE: To explore an MRI-based radiomics nomogram for preoperatively predicting of pelvic lymph node (PLN) metastasis in patients with early-stage cervical cancer (ECC). METHODS: Ninety-six patients with ECC were enrolled in this study. All patients underwent T2WI and DWI scans before radical hysterectomy with PLN dissection surgery. Radiomics features extracted from T2WI and DWI were selected by least absolute shrinkage and selection operation regression for further radimoics signature calculation. The discrimination of this radiomics signature for PLN metastasis was then assessed using a support vector machine (SVM) model. Subsequently, a radiomics nomogram was constructed based on the radiomics signature and clinicopathologic risk factors using a multivariable logistic regression method. The performance of the radiomics nomogram for the preoperative prediction of PLN metastasis was evaluated for discrimination and calibration. RESULTS: The radiomics signatures demonstrated a good discrimination for PLN metastasis. A radiomics signature derived from joint T2WI and DWI yielded higher AUC than the signatures derived from T2WI or DWI alone. The radiomics nomogram integrating the radiomics signature with clinicopathologic risk factors showed a significant improvement over the nomogram based only on clinicopathologic risk factors in the primary cohort(C-index, 0.893 vs. 0.616; P = 4.311×10) and validation cohort(C-index, 0.922 vs. 0.799; P = 3.412 ×10).The calibration curves also showed good agreement. CONCLUSIONS: The radiomics nomogram based on joint T2WI and DWI demonstrated an improved prediction ability for PLN metastasis in ECC. This noninvasive and convenient tool may be used to facilitate preoperative identification of PLN metastasis in patients with ECC.
目的:探讨基于 MRI 的放射组学列线图在预测早期宫颈癌(ECC)患者盆腔淋巴结(PLN)转移中的应用价值。
方法:本研究共纳入 96 例 ECC 患者,所有患者均在根治性子宫切除术及 PLN 清扫术前行 T2WI 和 DWI 扫描。采用最小绝对收缩和选择算子回归法从 T2WI 和 DWI 中提取放射组学特征,进一步计算放射组学特征。采用支持向量机(SVM)模型评估该放射组学特征对 PLN 转移的鉴别能力。然后,采用多变量逻辑回归方法基于放射组学特征和临床病理危险因素构建放射组学列线图。评估放射组学列线图对 PLN 转移的术前预测性能,以评估其鉴别和校准能力。
结果:放射组学特征对 PLN 转移具有良好的鉴别能力。联合 T2WI 和 DWI 的放射组学特征比仅来自 T2WI 或 DWI 的特征具有更高的 AUC。将放射组学特征与临床病理危险因素相结合构建的放射组学列线图在主要队列(C 指数:0.893 比 0.616;P=4.311×10)和验证队列(C 指数:0.922 比 0.799;P=3.412×10)中均显著优于仅基于临床病理危险因素的列线图。校准曲线也显示出良好的一致性。
结论:基于 T2WI 和 DWI 的放射组学列线图在预测 ECC 患者 PLN 转移方面具有更好的预测能力。这种非侵入性和方便的工具可能有助于术前识别 ECC 患者的 PLN 转移。
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020-12-7
J Magn Reson Imaging. 2018-10-26