文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 T2 加权 MRI 和弥散加权成像的放射组学列线图术前预测早期宫颈癌盆腔淋巴结转移

Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusion-weighted imaging.

机构信息

Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China; Department of Radiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, People's Republic of China.

School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.

出版信息

Eur J Radiol. 2019 May;114:128-135. doi: 10.1016/j.ejrad.2019.01.003. Epub 2019 Mar 20.


DOI:10.1016/j.ejrad.2019.01.003
PMID:31005162
Abstract

OBJECTIVE: To explore an MRI-based radiomics nomogram for preoperatively predicting of pelvic lymph node (PLN) metastasis in patients with early-stage cervical cancer (ECC). METHODS: Ninety-six patients with ECC were enrolled in this study. All patients underwent T2WI and DWI scans before radical hysterectomy with PLN dissection surgery. Radiomics features extracted from T2WI and DWI were selected by least absolute shrinkage and selection operation regression for further radimoics signature calculation. The discrimination of this radiomics signature for PLN metastasis was then assessed using a support vector machine (SVM) model. Subsequently, a radiomics nomogram was constructed based on the radiomics signature and clinicopathologic risk factors using a multivariable logistic regression method. The performance of the radiomics nomogram for the preoperative prediction of PLN metastasis was evaluated for discrimination and calibration. RESULTS: The radiomics signatures demonstrated a good discrimination for PLN metastasis. A radiomics signature derived from joint T2WI and DWI yielded higher AUC than the signatures derived from T2WI or DWI alone. The radiomics nomogram integrating the radiomics signature with clinicopathologic risk factors showed a significant improvement over the nomogram based only on clinicopathologic risk factors in the primary cohort(C-index, 0.893 vs. 0.616; P = 4.311×10) and validation cohort(C-index, 0.922 vs. 0.799; P = 3.412 ×10).The calibration curves also showed good agreement. CONCLUSIONS: The radiomics nomogram based on joint T2WI and DWI demonstrated an improved prediction ability for PLN metastasis in ECC. This noninvasive and convenient tool may be used to facilitate preoperative identification of PLN metastasis in patients with ECC.

摘要

目的:探讨基于 MRI 的放射组学列线图在预测早期宫颈癌(ECC)患者盆腔淋巴结(PLN)转移中的应用价值。

方法:本研究共纳入 96 例 ECC 患者,所有患者均在根治性子宫切除术及 PLN 清扫术前行 T2WI 和 DWI 扫描。采用最小绝对收缩和选择算子回归法从 T2WI 和 DWI 中提取放射组学特征,进一步计算放射组学特征。采用支持向量机(SVM)模型评估该放射组学特征对 PLN 转移的鉴别能力。然后,采用多变量逻辑回归方法基于放射组学特征和临床病理危险因素构建放射组学列线图。评估放射组学列线图对 PLN 转移的术前预测性能,以评估其鉴别和校准能力。

结果:放射组学特征对 PLN 转移具有良好的鉴别能力。联合 T2WI 和 DWI 的放射组学特征比仅来自 T2WI 或 DWI 的特征具有更高的 AUC。将放射组学特征与临床病理危险因素相结合构建的放射组学列线图在主要队列(C 指数:0.893 比 0.616;P=4.311×10)和验证队列(C 指数:0.922 比 0.799;P=3.412×10)中均显著优于仅基于临床病理危险因素的列线图。校准曲线也显示出良好的一致性。

结论:基于 T2WI 和 DWI 的放射组学列线图在预测 ECC 患者 PLN 转移方面具有更好的预测能力。这种非侵入性和方便的工具可能有助于术前识别 ECC 患者的 PLN 转移。

相似文献

[1]
Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusion-weighted imaging.

Eur J Radiol. 2019-3-20

[2]
Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram.

Eur Radiol. 2020-2-17

[3]
Multiparametric MRI-Based Radiomics Nomogram for Predicting Lymph Node Metastasis in Early-Stage Cervical Cancer.

J Magn Reson Imaging. 2020-9

[4]
Feasibility of TWI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients.

Eur Radiol. 2021-9

[5]
Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer.

J Clin Oncol. 2016-5-2

[6]
Development and Validation of an MRI-Based Radiomics Signature for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer.

EBioMedicine. 2018-8-2

[7]
[Radiomics nomogram of MR: a prediction of cervical lymph node metastasis in laryngeal cancer].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020-12-7

[8]
Ultrasound-based radiomics nomogram: A potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer.

Eur J Radiol. 2019-9-7

[9]
MR-Based Radiomics Nomogram of Cervical Cancer in Prediction of the Lymph-Vascular Space Invasion preoperatively.

J Magn Reson Imaging. 2018-10-26

[10]
Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer.

Eur Radiol. 2021-8

引用本文的文献

[1]
Prediction of cervical cancer lymph node metastasis based on multisequence magnetic resonance imaging radiomics and deep learning features: a dual-center study.

Sci Rep. 2025-8-10

[2]
Nomogram prediction of the lymph-vascular space invasion in cervical cancer: comparison of 2009 and 2018 staging systems.

Front Oncol. 2025-3-6

[3]
Computed tomography-based radiomics modeling to predict patient overall survival in cervical cancer with intensity-modulated radiotherapy combined with concurrent chemotherapy.

J Int Med Res. 2025-3

[4]
Magnetic Resonance Imaging Radiomics-Based Model for Prediction of Lymph Node Metastasis in Cervical Cancer.

Int J Gen Med. 2025-3-7

[5]
The deep learning radiomics nomogram helps to evaluate the lymph node status in cervical adenocarcinoma/adenosquamous carcinoma.

Front Oncol. 2024-12-13

[6]
Preoperative scoring system for the prediction of risk of lymph node metastasis in cervical cancer.

Sci Rep. 2024-10-11

[7]
Ranking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI.

J Appl Clin Med Phys. 2024-12

[8]
Development and validation of radiomic signature for predicting overall survival in advanced-stage cervical cancer.

Front Nucl Med. 2023-5-17

[9]
Hematological indicator-based machine learning models for preoperative prediction of lymph node metastasis in cervical cancer.

Front Oncol. 2024-8-13

[10]
Biparametric MRI of the prostate radiomics model for prediction of pelvic lymph node metastasis in prostate cancers : a two-centre study.

BMC Med Imaging. 2024-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索