文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于传统MRI的混合模型临床病理特征与影像组学用于预测宫颈癌淋巴结转移及无病生存期

A Hybrid Model-Based Clinicopathological Features and Radiomics Based on Conventional MRI for Predicting Lymph Node Metastasis and DFS in Cervical Cancer.

作者信息

Tian Mingke, Qin Fengying, Sun Xinyan, Pang Huiting, Yu Tao, Dong Yue

机构信息

Department of Radiology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, LiaoNing Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.

Graduate School of Dalian Medical University, Dalian, China.

出版信息

J Imaging Inform Med. 2025 Apr 18. doi: 10.1007/s10278-024-01371-9.


DOI:10.1007/s10278-024-01371-9
PMID:40251433
Abstract

This study aimed to improve the accuracy of the diagnosis of lymph node metastasis (LNM) and prediction of patient prognosis in cervical cancer patients using a hybrid model based on MRI and clinical aspects. We retrospectively analyzed routine MR data from 485 patients with pathologically confirmed cervical cancer from January 2014 to June 2021. The data were divided into a training cohort (N = 261), internal cohort (N = 113), and external validation cohort (n = 111). A total of 2194 features were extracted from each ROI from T2WI and CE-T1WI. The clinical model (M1) was built with clinicopathological features including squamous cell carcinoma antigen, MRI-reported LNM, maximal tumor diameter (MTD). The radiomics model (M2) was built with four radiomics features. The hybrid model (M3) was constructed with squamous cell carcinoma antigen, MRI-reported LNM, MTD which consists of M1 and four radiomics features which consist of M2. GBDT algorithms were used to create the scores of M1 (clinical-score, C-score), M2 (radiomic score, R-score), and M3 (hybrid-score, H-score). M3 showed good performance in the training cohort (AUCs, M3 vs. M1 vs. M2, 0.917 vs. 0.830 vs. 0.788), internal validation cohorts (AUCs, M3 vs. M1 vs. M2, 0.872 vs. 0.750 vs. 0.739), and external validation cohort (AUCs, M3 vs. M1 vs. M2, 0.907 vs. 0.811 vs. 0.785). In addition, higher scores were significantly associated with worse disease-free survival (DFS) in the training cohort and the internal validation cohort (C-score, P = 0.001; R-score, P = 0.002; H-score, P = 0.006). Radiomics models can accurately predict LNM status in patients with cervical cancer. The hybrid model, which incorporates clinical and radiomics features, is a novel way to enhance diagnostic performance and predict the prognosis of cervical cancer.

摘要

本研究旨在使用基于MRI和临床因素的混合模型提高宫颈癌患者淋巴结转移(LNM)诊断的准确性及患者预后的预测能力。我们回顾性分析了2014年1月至2021年6月期间485例经病理证实的宫颈癌患者的常规MR数据。数据被分为训练队列(N = 261)、内部队列(N = 113)和外部验证队列(n = 111)。从T2WI和CE-T1WI的每个感兴趣区域(ROI)中总共提取了2194个特征。临床模型(M1)由包括鳞状细胞癌抗原、MRI报告的LNM、最大肿瘤直径(MTD)等临床病理特征构建而成。影像组学模型(M2)由四个影像组学特征构建而成。混合模型(M3)由M1中的鳞状细胞癌抗原、MRI报告的LNM、MTD以及M2中的四个影像组学特征构建而成。采用梯度提升决策树(GBDT)算法生成M1(临床评分,C评分)、M2(影像组学评分,R评分)和M3(混合评分,H评分)的分数。M3在训练队列(AUC,M3对M1对M2,0.917对0.830对0.788)、内部验证队列(AUC,M3对M1对M2,0.872对0.750对0.739)和外部验证队列(AUC,M3对M1对M2,0.907对0.811对0.785)中均表现出良好性能。此外,在训练队列和内部验证队列中,较高的分数与较差的无病生存期(DFS)显著相关(C评分,P = 0.001;R评分,P = 0.002;H评分,P = 0.006)。影像组学模型能够准确预测宫颈癌患者的LNM状态。结合临床和影像组学特征的混合模型是提高宫颈癌诊断性能和预测预后的一种新方法。

相似文献

[1]
A Hybrid Model-Based Clinicopathological Features and Radiomics Based on Conventional MRI for Predicting Lymph Node Metastasis and DFS in Cervical Cancer.

J Imaging Inform Med. 2025-4-18

[2]
Prediction of lymph node metastasis in operable cervical cancer using clinical parameters and deep learning with MRI data: a multicentre study.

Insights Imaging. 2024-2-27

[3]
MRI-based multiregional radiomics for predicting lymph nodes status and prognosis in patients with resectable rectal cancer.

Front Oncol. 2023-1-4

[4]
Preoperative Prediction of Lymph Node Metastasis of Pancreatic Ductal Adenocarcinoma Based on a Radiomics Nomogram of Dual-Parametric MRI Imaging.

Front Oncol. 2022-7-6

[5]
Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer.

Insights Imaging. 2023-4-15

[6]
Radiomics from dual-energy CT-derived iodine maps predict lymph node metastasis in head and neck squamous cell carcinoma.

Radiol Med. 2024-2

[7]
Feasibility of TWI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients.

Eur Radiol. 2021-9

[8]
Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer.

Radiother Oncol. 2019-6-25

[9]
MRI-based multiregional radiomics for preoperative prediction of tumor deposit and prognosis in resectable rectal cancer: a bicenter study.

Eur Radiol. 2023-11

[10]
Predictive nomogram for lymph node metastasis and survival in gastric cancer using contrast-enhanced computed tomography-based radiomics: a retrospective study.

PeerJ. 2024

本文引用的文献

[1]
MRI-based radiomic signatures for pretreatment prognostication in cervical cancer.

Cancer Med. 2023-10

[2]
Para-aortic lymph node involvement in cervical cancer: Implications for staging, outcome and treatment.

Indian J Med Res. 2021-8

[3]
Prognostic factors in locally advanced cervical cancer with pelvic lymph node metastasis.

Int J Gynecol Cancer. 2022-3

[4]
An MRI-based radiomics signature and clinical characteristics for survival prediction in early-stage cervical cancer.

Br J Radiol. 2022-1-1

[5]
CT, MRI, and PET imaging features in cervical cancer staging and lymph node metastasis.

Am J Transl Res. 2021-9-15

[6]
Preoperative magnetic resonance imaging criteria for predicting lymph node metastasis in patients with stage IB1-IIA2 cervical cancer.

Cancer Med. 2021-8

[7]
MRI-based radiomics: promise for locally advanced cervical cancer treated with a tailored integrated therapeutic approach.

Tumori. 2022-8

[8]
Feasibility of TWI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients.

Eur Radiol. 2021-9

[9]
Use of radiomics based on F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: an innovative approach.

Eur J Nucl Med Mol Imaging. 2021-8

[10]
Lymph Node Staging with a Combined Protocol of F-FDG PET/MRI and Sentinel Node SPECT/CT: A Prospective Study in Patients with FIGO I/II Cervical Carcinoma.

J Nucl Med. 2021-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索