Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
Amino Acids. 2021 Apr;53(4):563-573. doi: 10.1007/s00726-021-02950-8. Epub 2021 Feb 14.
Nitrosylation of sulfhydryl (SH) groups of cysteine (Cys) moieties is an important post-translational modification (PTM), often on a par with phosphorylation. S-Nitrosoalbumin (ALB-CysSNO; SNALB) in plasma and S-nitrosohemoglobin (Hb-CysSNO; HbSNO) in red blood cells are considered the most abundant high-molecular-mass pools of nitric oxide (NO) bioactivity in the human circulation. SNALB per se is not an NO donor. Yet, it acts as a vasodilator and an inhibitor of platelet aggregation. SNALB can be formed by nitrosation of the sole reduced Cys group of albumin (Cys) by nitrosating species such as nitrous acid (HONO) and nitrous anhydride (NO), two unstable intermediates of NO autoxidation. SNALB can also be formed by the transfer (S-transnitrosylation) of the nitrosyl group (NO) of a low-molecular-mass (LMM) S-nitrosothiol (RSNO) to ALB-CysSH. In the present study, the effects of LMM thiols on the inhibitory potential of ALB-CysSNO on human washed platelets were investigated. ALB-CysSNO was prepared by reacting n-butylnitrite with albumin after selective extraction from plasma of a healthy donor on HiTrapBlue Sepharose cartridges. ALB-CysSNO was used in platelet aggregation measurements after extended purification on HiTrapBlue Sepharose and enrichment by ultrafiltration (cutoff, 20 kDa). All tested LMM cysteinyl thiols (R-CysSH) including L-cysteine and L-homocysteine (at 10 µM) were found to mediate the collagen-induced (1 µg/mL) aggregation of human washed platelets by SNALB (range, 0-10 µM) by cGMP-dependent and cGMP-independent mechanisms. The LMM thiols themselves did not affect platelet aggregation. It is assumed that the underlying mechanism involves S-transnitrosylation of SH groups of the platelet surface by LMM RSNO formed through the reaction of SNALB with the thiols: ALB-CysSNO + R-CysSH ↔ ALB-CysSH + R-CysSNO. Such S-transnitrosylation reactions may be accompanied by release of NO finally resulting in cGMP-dependent and cGMP-independent mechanisms.
硫醇(Cys)残基的亚硝基化是一种重要的翻译后修饰(PTM),通常与磷酸化相当。血浆中的 S-亚硝基白蛋白(ALB-CysSNO;SNALB)和红细胞中的 S-亚硝基血红蛋白(Hb-CysSNO;HbSNO)被认为是人类循环中一氧化氮(NO)生物活性的最丰富的高分子质量池。SNA LB 本身不是 NO 供体。然而,它具有血管扩张作用和血小板聚集抑制剂的作用。SNA LB 可以通过硝酰物种(如亚硝酸酸(HONO)和亚硝酸酐(NO))将白蛋白(Cys)的唯一还原 Cys 基团硝化为亚硝基化来形成。SNA LB 也可以通过低分子质量(LMM)S-亚硝硫醇(RSNO)的亚硝酰基(NO)转移(S-转亚硝酰基化)到 ALB-CysSH 来形成。在本研究中,研究了 LMM 硫醇对 ALB-CysSNO 抑制人洗涤血小板的潜力的影响。ALB-CysSNO 通过在 HiTrapBlue Sepharose 小珠上从健康供体的血浆中选择性提取后用正丁基亚硝酸盐与白蛋白反应来制备。ALB-CysSNO 在 HiTrapBlue Sepharose 上进行了广泛的纯化并通过超滤(截止值,20 kDa)进行了富集后,用于血小板聚集测量。发现所有测试的 LMM 半胱氨酸硫醇(R-CysSH),包括 L-半胱氨酸和 L-同型半胱氨酸(在 10 µM 时),通过 cGMP 依赖性和 cGMP 非依赖性机制介导由 SNALB(范围,0-10 µM)引起的胶原诱导的(1 µg/mL)人洗涤血小板聚集。LMM 硫醇本身不会影响血小板聚集。据推测,潜在的机制涉及通过 SNALB 与硫醇反应形成的 LMM RSNO 对血小板表面的 SH 基团的 S-转亚硝酰化:ALB-CysSNO + R-CysSH → ALB-CysSH + R-CysSNO。这种 S-转亚硝酰化反应可能伴随着最终导致 cGMP 依赖性和 cGMP 非依赖性机制的 NO 的释放。