Suppr超能文献

体外生物工程化骨骼肌的机械加载可再现体内抗阻运动的基因表达特征。

Mechanical loading of bioengineered skeletal muscle in vitro recapitulates gene expression signatures of resistance exercise in vivo.

机构信息

Institute for Science and Technology in Medicine (ISTM), School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK.

Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK.

出版信息

J Cell Physiol. 2021 Sep;236(9):6534-6547. doi: 10.1002/jcp.30328. Epub 2021 Feb 15.

Abstract

Understanding the role of mechanical loading and exercise in skeletal muscle (SkM) is paramount for delineating the molecular mechanisms that govern changes in muscle mass. However, it is unknown whether loading of bioengineered SkM in vitro adequately recapitulates the molecular responses observed after resistance exercise (RE) in vivo. To address this, the transcriptional and epigenetic (DNA methylation) responses were compared after mechanical loading in bioengineered SkM in vitro and after RE in vivo. Specifically, genes known to be upregulated/hypomethylated after RE in humans were analyzed. Ninety-three percent of these genes demonstrated similar changes in gene expression post-loading in the bioengineered muscle when compared to acute RE in humans. Furthermore, similar differences in gene expression were observed between loaded bioengineered SkM and after programmed RT in rat SkM tissue. Hypomethylation occurred for only one of the genes analysed (GRIK2) post-loading in bioengineered SkM. To further validate these findings, DNA methylation and mRNA expression of known hypomethylated and upregulated genes post-acute RE in humans were also analyzed at 0.5, 3, and 24 h post-loading in bioengineered muscle. The largest changes in gene expression occurred at 3 h, whereby 82% and 91% of genes responded similarly when compared to human and rodent SkM respectively. DNA methylation of only a small proportion of genes analyzed (TRAF1, MSN, and CTTN) significantly increased post-loading in bioengineered SkM alone. Overall, mechanical loading of bioengineered SkM in vitro recapitulates the gene expression profile of human and rodent SkM after RE in vivo. Although some genes demonstrated differential DNA methylation post-loading in bioengineered SkM, such changes across the majority of genes analyzed did not closely mimic the epigenetic response to acute-RE in humans.

摘要

了解机械负荷和运动在骨骼肌(SkM)中的作用对于阐明控制肌肉质量变化的分子机制至关重要。然而,目前尚不清楚体外培养的生物工程 SkM 的负荷是否能充分再现体内抗阻运动(RE)后观察到的分子反应。为了解决这个问题,比较了体外培养的生物工程 SkM 机械负荷后和体内 RE 后的转录和表观遗传(DNA 甲基化)反应。具体来说,分析了已知在人类 RE 后上调/低甲基化的基因。与人类急性 RE 后相比,这些基因中有 93%在生物工程肌肉加载后表现出相似的表达变化。此外,在负载生物工程 SkM 和大鼠 SkM 组织中的程序化 RT 后,也观察到基因表达的相似差异。在生物工程 SkM 中,只有一个分析的基因(GRIK2)在加载后发生低甲基化。为了进一步验证这些发现,还分析了在生物工程肌肉中加载后 0.5、3 和 24 小时人类急性 RE 后已知低甲基化和上调基因的 DNA 甲基化和 mRNA 表达。基因表达的最大变化发生在 3 小时,与人类和啮齿动物 SkM 相比,分别有 82%和 91%的基因反应相似。只有一小部分分析的基因(TRAF1、MSN 和 CTTN)的 DNA 甲基化在生物工程 SkM 单独加载后显著增加。总体而言,体外培养的生物工程 SkM 的机械负荷可再现体内 RE 后人类和啮齿动物 SkM 的基因表达谱。尽管一些基因在生物工程 SkM 中加载后表现出不同的 DNA 甲基化,但这些变化在大多数分析的基因中并未紧密模拟人类急性-RE 的表观遗传反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9156/8653897/23a0f3e7f346/JCP-236-6534-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验