Suppr超能文献

阐明多形态脂质纳米粒的内涵体逃逸机制,该纳米粒可促进 mRNA 递送。

Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon 97201, USA.

Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon 97201, USA and Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, Oregon 97201, USA.

出版信息

Biomater Sci. 2021 Jun 15;9(12):4289-4300. doi: 10.1039/d0bm01947j.

Abstract

Lipid-based nanoparticles (LNPs) for the delivery of mRNA have jumped to the forefront of non-viral gene delivery. Despite this exciting development, poor endosomal escape after LNP cell entry remains an unsolved, rate-limiting bottleneck. Here we report the use of a galectin 8-GFP (Gal8-GFP) cell reporter system to visualize the endosomal escape capabilities of LNP-encapsulated mRNA. LNPs substituted with phytosterols in place of cholesterol exhibited various levels of Gal8 recruitment in the Gal8-GFP reporter system. In live-cell imaging, LNPs containing β-sitosterol (LNP-Sito) showed a 10-fold increase in detectable endosomal perturbation events when compared to the standard cholesterol LNPs (LNP-Chol), suggesting the superior capability of LNP-Sito to escape from endosomal entrapment. Trafficking studies of these LNPs showed strong localization with late endosomes. This highly sensitive and robust Gal8-GFP reporter system can be a valuable tool to elucidate intricacies of LNP trafficking and ephemeral endosomal escape events, enabling advancements in gene delivery.

摘要

基于脂质的纳米颗粒(LNPs)已成为 mRNA 传递的首选非病毒基因传递载体。尽管这一发展令人兴奋,但 LNP 进入细胞后的内体逃逸仍然是一个未解决的、限速的瓶颈。在这里,我们报告了使用半乳糖凝集素 8-GFP(Gal8-GFP)细胞报告系统来可视化 LNP 包裹的 mRNA 的内体逃逸能力。用植物固醇替代胆固醇的 LNPs 在 Gal8-GFP 报告系统中表现出不同程度的 Gal8 募集。在活细胞成像中,与标准胆固醇 LNPs(LNP-Chol)相比,含有 β-谷甾醇的 LNP(LNP-Sito)显示出可检测到的内体扰动事件增加了 10 倍,这表明 LNP-Sito 具有更好的从内体捕获中逃逸的能力。这些 LNPs 的运输研究显示与晚期内体的强烈定位。这种高度敏感和强大的 Gal8-GFP 报告系统可以成为阐明 LNP 运输和短暂内体逃逸事件复杂性的有价值工具,从而推动基因传递的发展。

相似文献

1
Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery.
Biomater Sci. 2021 Jun 15;9(12):4289-4300. doi: 10.1039/d0bm01947j.
2
Intracellular trafficking kinetics of nucleic acid escape from lipid nanoparticles via fluorescence imaging.
Curr Pharm Biotechnol. 2023 Apr 3. doi: 10.2174/1389201024666230403094238.
3
Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA.
Int J Pharm. 2023 Jun 10;640:123050. doi: 10.1016/j.ijpharm.2023.123050. Epub 2023 May 16.
4
Modulating Lipid Nanoparticles with Histidinamide-Conjugated Cholesterol for Improved Intracellular Delivery of mRNA.
Adv Healthc Mater. 2024 Jun;13(14):e2303857. doi: 10.1002/adhm.202303857. Epub 2024 Feb 21.
5
Endosomal escape: A bottleneck for LNP-mediated therapeutics.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307800120. doi: 10.1073/pnas.2307800120. Epub 2024 Mar 4.
6
Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.
Eur J Pharm Sci. 2022 Sep 1;176:106234. doi: 10.1016/j.ejps.2022.106234. Epub 2022 Jun 8.
9
Engineering Lipid Nanoparticles for Enhanced Intracellular Delivery of mRNA through Inhalation.
ACS Nano. 2022 Sep 27;16(9):14792-14806. doi: 10.1021/acsnano.2c05647. Epub 2022 Aug 29.
10
Light-Activated siRNA Endosomal Release (LASER) by Porphyrin Lipid Nanoparticles.
ACS Nano. 2023 Mar 14;17(5):4688-4703. doi: 10.1021/acsnano.2c10936. Epub 2023 Feb 28.

引用本文的文献

2
Engineered lipid nanoparticles with synergistic dendritic cell targeting and enhanced endosomal escape for boosted mRNA cancer vaccines.
Mater Today Bio. 2025 Jul 19;34:102107. doi: 10.1016/j.mtbio.2025.102107. eCollection 2025 Oct.
3
Endo/Lysosomal-Escapable Lipid Nanoparticle Platforms for Enhancing mRNA Delivery in Cancer Therapy.
Pharmaceutics. 2025 Jun 20;17(7):803. doi: 10.3390/pharmaceutics17070803.
4
Rational design of lipid nanoparticles for enabling gene therapies.
Mol Ther Methods Clin Dev. 2025 Jun 18;33(3):101518. doi: 10.1016/j.omtm.2025.101518. eCollection 2025 Sep 11.
5
Cellular and biophysical barriers to lipid nanoparticle mediated delivery of RNA to the cytosol.
Nat Commun. 2025 Jul 1;16(1):5354. doi: 10.1038/s41467-025-60959-z.
6
Exploring the potential of saponins as adjuvants in lipid-nanoparticle-based mRNA vaccines.
Mol Ther Methods Clin Dev. 2025 May 21;33(2):101495. doi: 10.1016/j.omtm.2025.101495. eCollection 2025 Jun 12.
7
Transition Temperature-Guided Design of Lipid Nanoparticles for Effective mRNA Delivery.
ACS Appl Mater Interfaces. 2025 May 14;17(19):28012-28024. doi: 10.1021/acsami.5c06464. Epub 2025 May 5.
8
Delivery of small interfering RNA through lyophilized natural lipid nanoparticles: effects of natural lipid selection.
Pharm Biol. 2025 Dec;63(1):343-356. doi: 10.1080/13880209.2025.2498169. Epub 2025 May 2.
10
Recent strategies for enhanced delivery of mRNA to the lungs.
Nanomedicine (Lond). 2025 May;20(9):1043-1069. doi: 10.1080/17435889.2025.2485669. Epub 2025 Apr 7.

本文引用的文献

1
Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates.
N Engl J Med. 2020 Dec 17;383(25):2439-2450. doi: 10.1056/NEJMoa2027906. Epub 2020 Oct 14.
2
Galectins in Intra- and Extracellular Vesicles.
Biomolecules. 2020 Aug 24;10(9):1232. doi: 10.3390/biom10091232.
3
Naturally Derived Membrane Lipids Impact Nanoparticle-Based Messenger RNA Delivery.
Cell Mol Bioeng. 2020 May 26;13(5):463-474. doi: 10.1007/s12195-020-00619-y. eCollection 2020 Oct.
4
Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates.
N Engl J Med. 2020 Oct 15;383(16):1544-1555. doi: 10.1056/NEJMoa2024671. Epub 2020 Jul 28.
5
Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria.
N Engl J Med. 2020 Jun 11;382(24):2289-2301. doi: 10.1056/NEJMoa1913147.
6
Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery.
Nano Lett. 2020 Jun 10;20(6):4543-4549. doi: 10.1021/acs.nanolett.0c01386. Epub 2020 May 12.
7
Imaging small molecule-induced endosomal escape of siRNA.
Nat Commun. 2020 Apr 14;11(1):1809. doi: 10.1038/s41467-020-15300-1.
8
Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing.
Nat Nanotechnol. 2020 Apr;15(4):313-320. doi: 10.1038/s41565-020-0669-6. Epub 2020 Apr 6.
10
Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing.
Sci Adv. 2019 Dec 6;5(12):eaay3255. doi: 10.1126/sciadv.aay3255. eCollection 2019 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验