Department of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden.
Advanced Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden.
ACS Nano. 2024 Aug 27;18(34):22989-23000. doi: 10.1021/acsnano.4c04519. Epub 2024 Aug 12.
Advances in lipid nanoparticle (LNP) design have contributed notably to the emergence of the current clinically approved mRNA-based vaccines and are of high relevance for delivering mRNA to combat diseases where therapeutic alternatives are sparse. LNP-assisted mRNA delivery utilizes ionizable lipid-mediated cargo translocation across the endosomal membrane driven by the acidification of the endosomal environment. However, this process occurs at a low efficiency, a few percent at the best. Utilizing surface-sensitive fluorescence microscopy with a single LNP and mRNA resolution, we have investigated pH-controlled interactions between individual LNPs and a planar anionic supported lipid bilayer (SLB) formed on nanoporous silica, mimicking the electrostatic conditions of the early endosomal membrane. For LNPs with an average diameter of 140 nm, fusion with the anionic SLB preferentially occurred when the pH was reduced from 6.6 to 6.0. Furthermore, there was a delay in the onset of LNP fusion after the pH drop, and upon fusion, a significant fraction (>70%) of mRNA was released into the acidic solution representing the endosomal lumen, while a fraction of mRNA remained bound to the SLB even after reversing the pH to neutral cytosolic conditions. Finally, a comparison of the fusion efficiency of two LNP formulations with different surface concentrations of gel-forming lipids correlated with differences in the protein translation efficiency previously observed in human primary cell transfection studies. Together, these findings emphasize the relevance of biophysical investigations of ionizable lipid-containing LNP-assisted mRNA delivery mechanisms while potentially also offering means to optimize the design of LNPs with enhanced endosomal escape capabilities.
脂质纳米颗粒 (LNP) 设计的进步显著推动了当前临床批准的基于 mRNA 的疫苗的出现,对于递送 mRNA 以治疗治疗选择有限的疾病具有重要意义。LNP 辅助的 mRNA 递送利用可离子化脂质介导的货物穿过内体膜的易位,该易位由内体环境的酸化驱动。然而,这个过程的效率很低,最好的情况下也只有百分之几。利用具有单个 LNP 和 mRNA 分辨率的表面敏感荧光显微镜,我们研究了单个 LNPs 与在纳米多孔硅上形成的带负电荷的支撑脂质双层 (SLB) 之间的 pH 控制相互作用,该双层模拟了早期内体膜的静电条件。对于平均直径为 140nm 的 LNPs,当 pH 从 6.6 降低到 6.0 时,与带负电荷的 SLB 的融合优先发生。此外,在 pH 下降后,LNP 融合的起始时间存在延迟,并且在融合后,大部分 (>70%)的 mRNA 被释放到代表内体腔的酸性溶液中,而一部分 mRNA 即使在将 pH 反转到中性胞质条件后仍与 SLB 结合。最后,比较两种具有不同凝胶形成脂质表面浓度的 LNP 制剂的融合效率与先前在人类原代细胞转染研究中观察到的蛋白质翻译效率的差异相关。总之,这些发现强调了对带正电荷的脂质纳米颗粒辅助的 mRNA 递送机制进行生物物理研究的相关性,同时也可能提供了增强内体逃逸能力的 LNP 设计优化的手段。