Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon 97201, United States.
Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.
ACS Nano. 2022 Sep 27;16(9):14792-14806. doi: 10.1021/acsnano.2c05647. Epub 2022 Aug 29.
Despite lipid nanoparticles' (LNPs) success in the effective and safe delivery of mRNA vaccines, an inhalation-based mRNA therapy for lung diseases remains challenging. LNPs tend to disintegrate due to shear stress during aerosolization, leading to ineffective delivery. Therefore, LNPs need to remain stable through the process of nebulization and mucus penetration, yet labile enough for endosomal escape. To meet these opposing needs, we utilized PEG lipid to enhance the surficial stability of LNPs with the inclusion of a cholesterol analog, β-sitosterol, to improve endosomal escape. Increased PEG concentrations in LNPs enhanced the shear resistance and mucus penetration, while β-sitosterol provided LNPs with a polyhedral shape, facilitating endosomal escape. The optimized LNPs exhibited a uniform particle distribution, a polyhedral morphology, and a rapid mucosal diffusion with enhanced gene transfection. Inhaled LNPs led to localized protein production in the mouse lung without pulmonary or systemic toxicity. Repeated administration of these LNPs led to sustained protein production in the lungs. Lastly, mRNA encoding the cystic fibrosis transmembrane conductance regulator (CFTR) was delivered after nebulization to a CFTR-deficient animal model, resulting in the pulmonary expression of this therapeutic protein. This study demonstrated the rational design approach for clinical translation of inhalable LNP-based mRNA therapies.
尽管脂质纳米颗粒(LNPs)在有效和安全地传递 mRNA 疫苗方面取得了成功,但用于肺部疾病的吸入式 mRNA 疗法仍然具有挑战性。LNPs 在雾化过程中由于剪切力而容易解体,导致传递效果不佳。因此,LNPs 需要在雾化和黏液穿透过程中保持稳定,但又需要足够不稳定以实现内体逃逸。为了满足这些相互矛盾的需求,我们利用 PEG 脂质来增强 LNPs 的表面稳定性,同时包含胆固醇类似物β-谷甾醇,以改善内体逃逸。LNPs 中的 PEG 浓度增加提高了剪切阻力和黏液穿透性,而β-谷甾醇使 LNPs 具有多面体形状,有利于内体逃逸。优化后的 LNPs 表现出均匀的颗粒分布、多面体形态以及增强的基因转染的快速黏膜扩散。吸入式 LNPs 导致小鼠肺部局部产生蛋白质,而没有肺部或全身毒性。这些 LNPs 的重复给药导致肺部持续产生蛋白质。最后,在囊性纤维化跨膜电导调节剂(CFTR)缺失的动物模型中,通过雾化将编码 CFTR 的 mRNA 递送至肺部,从而表达这种治疗性蛋白质。这项研究展示了可吸入 LNPs 基 mRNA 疗法临床转化的合理设计方法。