Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA.
Soft Matter. 2021 Mar 18;17(10):2931-2941. doi: 10.1039/d0sm02086a.
Characterization of soft materials is challenging due to their high compliance and the strain-rate dependence of their mechanical properties. The inertial microcavitation-based high strain-rate rheometry (IMR) method [Estrada et al., J. Mech. Phys. Solids, 2018, 112, 291-317] combines laser-induced cavitation measurements with a model for the bubble dynamics to measure local properties of polyacrylamide hydrogel under high strain-rates from 103 to 108 s-1. While promising, laser-induced cavitation involves plasma formation and optical breakdown during nucleation, a process that could alter local material properties before measurements are obtained. In the present study, we extend the IMR method to another means to generate cavitation, namely high-amplitude focused ultrasound, and apply the resulting acoustic-cavitation-based IMR to characterize the mechanical properties of agarose hydrogels. Material properties including viscosity, elastic constants, and a stress-free bubble radius are inferred from bubble radius histories in 0.3% and 1% agarose gels. An ensemble-based data assimilation is used to further help interpret the obtained estimates. The resulting parameter distributions are consistent with available measurements of agarose gel properties and with expected trends related to gel concentration and high strain-rate loading. Our findings demonstrate the utility of applying IMR and data assimilation methods with single-bubble acoustic cavitation data for measurement of viscoelastic properties.
由于软物质的高顺应性和力学性能对应变速率的依赖性,对其进行特性描述具有挑战性。基于惯性微空化的高应变速率流变测量法(IMR)[Estrada 等人,J. Mech. Phys. Solids, 2018, 112, 291-317]将激光诱导空化测量与气泡动力学模型相结合,用于测量聚丙酰胺水凝胶在 103 至 108 s-1 的高应变速率下的局部性能。虽然很有前景,但激光诱导空化涉及在成核过程中产生等离子体和光学击穿,这一过程可能会在获得测量结果之前改变局部材料性能。在本研究中,我们将 IMR 方法扩展到另一种产生空化的方法,即高幅值聚焦超声,并将由此产生的基于声空化的 IMR 应用于琼脂糖水凝胶的机械性能表征。通过测量 0.3%和 1%琼脂糖凝胶中的气泡半径历史,推导出包括粘度、弹性常数和无应力气泡半径在内的材料性质。基于集合的数据同化进一步有助于解释所得到的估计值。得到的参数分布与琼脂糖凝胶性质的现有测量值一致,并且与凝胶浓度和高应变速率加载相关的预期趋势一致。我们的研究结果表明,应用 IMR 和数据同化方法与单气泡声空化数据测量粘弹性性质的有效性。