Suppr超能文献

用于链路预测的异质超图变分自编码器

Heterogeneous Hypergraph Variational Autoencoder for Link Prediction.

作者信息

Fan Haoyi, Zhang Fengbin, Wei Yuxuan, Li Zuoyong, Zou Changqing, Gao Yue, Dai Qionghai

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4125-4138. doi: 10.1109/TPAMI.2021.3059313. Epub 2022 Jul 1.

Abstract

Link prediction aims at inferring missing links or predicting future ones based on the currently observed network. This topic is important for many applications such as social media, bioinformatics and recommendation systems. Most existing methods focus on homogeneous settings and consider only low-order pairwise relations while ignoring either the heterogeneity or high-order complex relations among different types of nodes, which tends to lead to a sub-optimal embedding result. This paper presents a method named Heterogeneous Hypergraph Variational Autoencoder (HeteHG-VAE) for link prediction in heterogeneous information networks (HINs). It first maps a conventional HIN to a heterogeneous hypergraph with a certain kind of semantics to capture both the high-order semantics and complex relations among nodes, while preserving the low-order pairwise topology information of the original HIN. Then, deep latent representations of nodes and hyperedges are learned by a Bayesian deep generative framework from the heterogeneous hypergraph in an unsupervised manner. Moreover, a hyperedge attention module is designed to learn the importance of different types of nodes in each hyperedge. The major merit of HeteHG-VAE lies in its ability of modeling multi-level relations in heterogeneous settings. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of the proposed method.

摘要

链接预测旨在基于当前观察到的网络推断缺失的链接或预测未来的链接。该主题对于许多应用(如社交媒体、生物信息学和推荐系统)都很重要。大多数现有方法专注于同构设置,仅考虑低阶成对关系,而忽略了不同类型节点之间的异质性或高阶复杂关系,这往往会导致次优的嵌入结果。本文提出了一种名为异质超图变分自编码器(HeteHG-VAE)的方法,用于异质信息网络(HIN)中的链接预测。它首先将传统的HIN映射到具有某种语义的异质超图,以捕获节点之间的高阶语义和复杂关系,同时保留原始HIN的低阶成对拓扑信息。然后,通过贝叶斯深度生成框架以无监督的方式从异质超图中学习节点和超边的深度潜在表示。此外,设计了一个超边注意力模块来学习每个超边中不同类型节点的重要性。HeteHG-VAE的主要优点在于其在异质设置中对多级关系进行建模的能力。在真实世界数据集上进行的大量实验证明了所提方法的有效性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验