Papillon Mathilde, Sanborn Sophia, Mathe Johan, Cornelis Louisa, Bertics Abby, Buracas Domas, J Lillemark Hansen, Shewmake Christian, Dinc Fatih, Pennec Xavier, Miolane Nina
UC Santa Barbara, Santa Barbara, United States of America.
Equal contribution.
Mach Learn Sci Technol. 2025 Sep 30;6(3):031002. doi: 10.1088/2632-2153/adf375. Epub 2025 Aug 1.
The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently non-Euclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the algebraic transformations describing symmetries of physical systems. Extracting knowledge from such non-Euclidean data necessitates a broader mathematical perspective. Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures. Its goal: generalizing classical methods to unconventional data types with geometry, topology, and algebra. In this review, we provide an accessible gateway to this fast-growing field and propose a graphical taxonomy that integrates recent advances into an intuitive unified framework. We subsequently extract insights into current challenges and highlight exciting opportunities for future development in this field.
欧几里得几何的持久遗产支撑着经典机器学习,几十年来,经典机器学习主要是为欧几里得空间中的数据而开发的。然而,现代机器学习越来越多地遇到本质上非欧几里得的结构丰富的数据。这种数据可以展现出复杂的几何、拓扑和代数结构:从时空曲率的几何结构,到大脑中神经元之间拓扑复杂的相互作用,再到描述物理系统对称性的代数变换。从这种非欧几里得数据中提取知识需要更广阔的数学视角。呼应19世纪催生非欧几里得几何的革命,一个新兴的研究方向正在用非欧几里得结构重新定义现代机器学习。其目标是:将经典方法推广到具有几何、拓扑和代数结构的非常规数据类型。在这篇综述中,我们为这个快速发展的领域提供了一个易于理解的切入点,并提出了一种图形分类法,将近期进展整合到一个直观的统一框架中。我们随后深入了解当前的挑战,并突出该领域未来发展的令人兴奋的机遇。