Suppr超能文献

视觉联想学习诱导全局网络重组。

Visual association learning induces global network reorganization.

机构信息

Bilingual Cognition and Development Lab, Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou, 510420, China.

Department of Psychology, Renmin University of China, Beijing, 100872, China.

出版信息

Neuropsychologia. 2021 Apr 16;154:107789. doi: 10.1016/j.neuropsychologia.2021.107789. Epub 2021 Feb 12.

Abstract

It has been proposed that visual learning is accomplished not only by neural plasticity in the visual cortex, but also by complex interactions between bottom-up and top-down processes that may induce global network reorganization. Here, we applied a multivariate analysis to functional connectivity (FC) patterns across the brain to investigate how visual association learning was achieved through large-scale network reorganization. Participants were trained to associate a set of artificial line-drawing objects with English letters. After three consecutive days of training, participants underwent a functional magnetic resonance imaging scan in which they were presented with the trained stimuli, untrained stimuli, and English words. By calculating pairwise FC between 189 nodes of 10 well-established networks across the brain, we found that the visual association learning induced changes in the global FC pattern when viewing the trained stimuli, rendering it more similar to the FC pattern when viewing English words. Critically, the learning-induced global FC pattern differences were mainly driven by the FC related to the high-level networks involved in attention and cognitive control, suggesting the modification of top-down processes during learning. In sum, our study provides one of the first evidence revealing global network reorganization induced by visual learning and sheds new light on the network mechanisms of top-down influences in learning.

摘要

有人提出,视觉学习不仅是通过视觉皮层的神经可塑性来完成的,还需要通过自下而上和自上而下的复杂相互作用来完成,这些相互作用可能会诱导全局网络重组。在这里,我们应用了一种多元分析方法来研究功能连接 (FC) 模式,以研究视觉联想学习是如何通过大规模网络重组来实现的。参与者接受了一组人工线条画物体与英文字母的关联训练。经过连续三天的训练,参与者接受了功能磁共振成像扫描,在扫描中,他们观看了训练过的刺激物、未训练过的刺激物和英文字母。通过计算大脑中 10 个成熟网络的 189 个节点之间的成对 FC,我们发现,当观看训练过的刺激物时,视觉联想学习会引起全局 FC 模式的变化,使其更类似于观看英文字母时的 FC 模式。重要的是,学习引起的全局 FC 模式差异主要是由与注意力和认知控制相关的高级网络的 FC 驱动的,这表明学习过程中自上而下过程的改变。总之,我们的研究提供了视觉学习引起的全局网络重组的证据之一,并为学习中自上而下影响的网络机制提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验