Institut National de l'Environnement Industriel et des Risques (INERIS), 60550, Verneuil en Halatte, France.
Institut National de l'Environnement Industriel et des Risques (INERIS), 60550, Verneuil en Halatte, France.
Regul Toxicol Pharmacol. 2021 Jun;122:104893. doi: 10.1016/j.yrtph.2021.104893. Epub 2021 Feb 12.
Regulatory frameworks require information on acute fish toxicity to ensure environmental protection. The experimental assessment of this property relies on a substantial number of fish to be tested and it is in conflict with the current drive to replace in vivo testing. For this reason, alternatives to in vivo testing have been proposed during the past years. Among these alternatives, there are Quantitative Structure-Activity Relationships (QSAR) that require the sole knowledge of chemical structure to yield predictions of toxicities. In this context, the OECD QSAR Toolbox is one of the leading QSAR tools for regulatory purposes that enables the prediction of fish toxicities. The aim of this work is to provide evidence about the predictive reliability of the automated workflow for predicting acute toxicity in fish which is embedded within this toolbox. The results herein presented show that the logic underpinning this automated workflow can predict with a reliability that, in the majority of cases, is comparable to inter-laboratory variability and, in a significant number of cases, is also comparable with intra-laboratory variability. Moreover, considerations on the toxic mode of action provided by the OECD tool proved to be helpful in refining predictions and reducing the number of prediction outliers.
监管框架需要有关鱼类急性毒性的信息,以确保环境保护。该属性的实验评估依赖于大量的鱼类进行测试,这与当前替代体内测试的趋势相冲突。出于这个原因,在过去几年中提出了替代体内测试的方法。在这些替代方法中,有一种定量构效关系(QSAR),它仅需要化学结构的知识就能预测毒性。在这种情况下,OECD QSAR 工具箱是用于监管目的的领先 QSAR 工具之一,可用于预测鱼类毒性。本工作的目的是为 OECD 工具箱中嵌入的用于预测鱼类急性毒性的自动化工作流程的预测可靠性提供证据。本文介绍的结果表明,该自动化工作流程的逻辑可以以可靠性进行预测,在大多数情况下,其可靠性与实验室间变异性相当,在许多情况下,其可靠性也与实验室内变异性相当。此外,OECD 工具提供的毒作用模式考虑因素有助于改进预测并减少预测异常值的数量。