Suppr超能文献

从 Car-Parrinello 分子动力学对肾上腺素的明确定义的水溶剂化处理:氢键对电子吸收光谱的影响。

Explicit Aqueous Solvation Treatment of Epinephrine from Car-Parrinello Molecular Dynamics: Effect of Hydrogen Bonding on the Electronic Absorption Spectrum.

机构信息

Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Química , Universidade Federal de Goiás , 70904-970 Brasília , DF, Brazil.

Grupo de Química Teórica de Anápolis (GQTEA) , Universidade Estadual de Goiás , 75132-903 Anápolis , Goiás , Brazil.

出版信息

J Phys Chem B. 2018 Sep 6;122(35):8439-8450. doi: 10.1021/acs.jpcb.8b06110. Epub 2018 Aug 23.

Abstract

The electronic absorption spectrum of the neurotransmitter epinephrine (EPN) in water solution is studied, combining ab initio Car-Parrinello molecular dynamics (CPMD) with a quantum mechanical approach within the framework of the time-dependent density functional theory (TDDFT) scheme. By selecting 52 uncorrelated snapshots, the excitation modes were calculated at the LC-ωPBE/6-31+G(d) level of theory, using an optimal range-separation parameter ω, determined by means of the gap-tuning scheme in the presence of the solvent molecules. By comparing with static approaches (vacuum and implicit solvation), we show here that explicit solvation treatment dramatically enhances the photophysical properties of the EPN, especially because of the more realistic dynamic description of the molecular geometry. The agreement between the simulated and experimental spectra is demonstrated when TDDFT calculations are performed with the optimally tuned version of the DFT hybrid, not only improving the relative intensities of the absorption bands but also the λ position. These results highlight that accounting for the nuclear motions, that is, thermal effects (of both chromophore and solvent molecules), is imperative to predict experimental absorption spectra. In this paper, we have addressed the critical importance of explicit solvation effects on the photophysics of the EPN, raking in performance when the simulation is performed based on first-principles molecular dynamics such as CPMD.

摘要

研究了神经递质肾上腺素(EPN)在水溶液中的电子吸收光谱,结合从头算 Car-Parrinello 分子动力学(CPMD)和基于含时密度泛函理论(TDDFT)方案的量子力学方法。通过选择 52 个不相关的快照,在 LC-ωPBE/6-31+G(d)理论水平上计算了激发模式,使用通过存在溶剂分子的间隙调谐方案确定的最佳范围分离参数 ω。通过与静态方法(真空和隐式溶剂化)进行比较,我们在这里表明,显式溶剂化处理极大地增强了 EPN 的光物理性质,特别是由于对分子几何形状的更现实的动态描述。当使用经过优化的 DFT 混合体进行 TDDFT 计算时,模拟和实验光谱之间的一致性得到了证明,不仅提高了吸收带的相对强度,而且还提高了 λ 位置。这些结果表明,考虑核运动,即热效应(发色团和溶剂分子)对于预测实验吸收光谱至关重要。在本文中,我们解决了显式溶剂化效应对 EPN 光物理的重要性,在基于第一性原理分子动力学(如 CPMD)的模拟中提高了性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验