Suppr超能文献

光气:毒理学、动物模型和医疗对策。

Phosgene: toxicology, animal models, and medical countermeasures.

机构信息

Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA.

Rubicon Biotechnology, Irvine, CA, USA.

出版信息

Toxicol Mech Methods. 2021 May;31(4):293-307. doi: 10.1080/15376516.2021.1885544. Epub 2021 Feb 27.

Abstract

Phosgene is a gas crucial to industrial chemical processes with widespread production (∼1 million tons/year in the USA, 8.5 million tons/year worldwide). Phosgene's high toxicity and physical properties resulted in its use as a chemical warfare agent during the First World War with a designation of CG ('Choky Gas'). The industrial availability of phosgene makes it a compound of concern as a weapon of mass destruction by terrorist organizations. The hydrophobicity of phosgene exacerbates its toxicity often resulting in a delayed toxidrome as the upper airways are moderately irritated; by the time symptoms appear, significant damage has occurred. As the standard of care for phosgene intoxication is supportive therapy, a pressing need for effective therapeutics and treatment regimens exists. Proposed toxicity mechanisms for phosgene based on human and animal exposures are discussed. Whereas intermediary components in the phosgene intoxication pathways are under continued discussion, generation of reactive oxygen species and oxidative stress is a common factor. As animal models are required for the study of phosgene and for FDA approval via the Animal Rule; the status of existing models and their adherence to Haber's Rule is discussed. Finally, we review the continued search for efficacious therapeutics for phosgene intoxication; and present a rapid post-exposure response that places exogenous human heat shock protein 72, in the form of a cell-penetrating fusion protein (Fv-HSP72), into lung tissues to combat apoptosis resulting from oxidative stress. Despite significant progress, additional work is required to advance effective therapeutics for acute phosgene exposure.

摘要

光气是一种在工业化学过程中至关重要的气体,其产量广泛(美国约为 100 万吨/年,全球为 850 万吨/年)。光气的高毒性和物理性质使其在第一次世界大战中被用作化学战剂,代号为 CG(“窒息性气体”)。光气的工业可用性使其成为恐怖组织用作大规模杀伤性武器的一种关注化合物。光气的疏水性加剧了其毒性,通常会导致迟发性中毒症状,因为上呼吸道受到中度刺激;当症状出现时,已经造成了严重的损害。由于光气中毒的标准治疗方法是支持性治疗,因此迫切需要有效的治疗方法和治疗方案。本文讨论了基于人类和动物暴露的光气毒性机制。虽然光气中毒途径中的中间成分仍在讨论中,但活性氧物种和氧化应激的产生是一个共同因素。由于需要动物模型来研究光气,并通过动物规则获得 FDA 批准;因此讨论了现有的模型及其对哈伯规则的遵守情况。最后,我们回顾了为光气中毒寻找有效治疗方法的持续努力;并提出了一种快速的暴露后反应,将外源性人热休克蛋白 72 以细胞穿透融合蛋白(Fv-HSP72)的形式递送到肺组织中,以对抗氧化应激引起的细胞凋亡。尽管取得了重大进展,但仍需要进一步的工作来推进急性光气暴露的有效治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验