Suppr超能文献

解读新型砷化镓纳米团簇对化学战光气的电化学传感能力:来自密度泛函理论的见解

Deciphering the electrochemical sensing capability of novel GaAs nanocluster towards chemical warfare phosgene gas: insights from DFT.

作者信息

Javed Muhammad, Khan Muhammad Usman, Hussain Riaz, Ahmed Sarfraz, Ahamad Tansir

机构信息

Department of Chemistry, University of Okara Okara-56300 Pakistan

Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital Boston MA 02114 USA.

出版信息

RSC Adv. 2023 Oct 2;13(41):28885-28903. doi: 10.1039/d3ra05086f. eCollection 2023 Sep 26.

Abstract

The applications of 3D inorganic nanomaterials in environmental and agriculture monitoring have been exploited continuously; however, the utilization of semiconductor nanoclusters, especially for detecting warfare agents, has not been fully investigated yet. To fill this gap, the molecular modelling of novel inorganic semiconductor nanocluster GaAs as a sensor for phosgene gas (highly toxic for living things and the environment) is accomplished employing benchmark DFT and TD-DFT investigations. Computational tools have been applied to explore different adsorption sites and the potential sensing capability of the GaAs nanoclusters. The calculated adsorption energy (-21.34 ± 2.7 kcal mol) for ten selected complexes, namely, Pgn-Cl@4m-ring (MS1), Pgn-Cl@6m-ring (MS2), Pgn-Cl@XY66 (MS3), Pgn-O@4m-ring (MS4), Pgn-O@XY66 (MS5), Pgn-O@XY64 (MS6), Pgn-O@Y (MS7), Pgn-planar@Y (MS8), Pgn-planar@X (MS9), and Pgn-planar@4m-ring (MS10), manifest the remarkable and excessive adsorption response of the studied nanoclusters. The explored molecular electronic properties, such as interaction distance (3.05 ± 0.5 Å), energy gap (∼2.17 eV), softness (∼0.46 eV), hardness (1.10 ± 0.01 eV), electrophilicity index (10.27 ± 0.45 eV), electrical conductivity (∼1.98 × 10), and recovery time (∼3 × 10 s) values, ascertain the elevated reactivity and an imperishable sensitivity of the GaAs nanocluster, particularly for its complex MS8. QTAIM analysis exhibits the presence of a strong electrostatic bond (positive () values), electron delocalization (ELF < 0.5), and a strong chemical bond (because of high all-electron density values). In addition, NBO analysis explores the lone pair electron delocalization of phosgene to the nanocluster stabilized by intermolecular charge transfer (ICT) and different kinds of non-covalent interactions. Also, the green region existence expressed by NCI analysis (between the nanocluster and adsorbate) stipulate the energetic and dominant interactions. Furthermore, the UV-Vis, thermodynamic analysis, and density of state (DOS) demonstrate the maximum absorbance (562.11 nm) and least excitation energy (2.21 eV) by the complex MS8, the spontaneity of the interaction process, and the significant changes in HOMO and LUMO energies, respectively. Thus, the GaAs nanocluster has proven to be a promising influential sensing material to monitor phosgene gas in the real world, and this study will emphasize the informative knowledge for experimental researchers to use GaAs as a sensor for the warfare agent (phosgene).

摘要

3D无机纳米材料在环境和农业监测中的应用不断得到开发;然而,半导体纳米团簇的利用,特别是用于检测战争毒剂,尚未得到充分研究。为了填补这一空白,采用基准DFT和TD-DFT研究方法,完成了新型无机半导体纳米团簇GaAs作为光气(对生物和环境剧毒)传感器的分子建模。已应用计算工具来探索不同的吸附位点以及GaAs纳米团簇的潜在传感能力。计算得出的十种选定配合物,即Pgn-Cl@4m-环(MS1)、Pgn-Cl@6m-环(MS2)、Pgn-Cl@XY66(MS3)、Pgn-O@4m-环(MS4)、Pgn-O@XY66(MS5)、Pgn-O@XY64(MS6)、Pgn-O@Y(MS7)、Pgn-平面@Y(MS8)、Pgn-平面@X(MS9)和Pgn-平面@4m-环(MS10)的吸附能(-21.34±2.7 kcal mol),表明所研究的纳米团簇具有显著且过量的吸附响应。所探索的分子电子性质,如相互作用距离(3.05±0.5 Å)、能隙(2.17 eV)、柔软度(0.46 eV)、硬度(1.10±0.01 eV)、亲电性指数(10.27±0.45 eV)、电导率(1.98×10)和恢复时间(3×10 s)值,确定了GaAs纳米团簇具有较高的反应活性和持久的灵敏度,特别是对于其配合物MS8。QTAIM分析显示存在强静电键(正()值)、电子离域(ELF < 0.5)和强化学键(由于高全电子密度值)。此外,NBO分析探索了光气的孤对电子通过分子间电荷转移(ICT)和不同种类的非共价相互作用向纳米团簇的离域。而且,NCI分析(在纳米团簇和吸附质之间)表示的绿色区域规定了能量和主导相互作用。此外,UV-Vis、热力学分析和态密度(DOS)分别表明配合物MS8的最大吸光度(562.11 nm)和最小激发能(2.21 eV)、相互作用过程的自发性以及HOMO和LUMO能量的显著变化。因此,GaAs纳米团簇已被证明是一种有前途的有影响力的传感材料,可在现实世界中监测光气,并且这项研究将为实验研究人员提供有用的知识,以便将GaAs用作战争毒剂(光气)的传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7da/10543987/212ae3d164e8/d3ra05086f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验