Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
Mol Psychiatry. 2021 Sep;26(9):4944-4957. doi: 10.1038/s41380-021-01022-3. Epub 2021 Feb 15.
Children with Attention Deficit Hyperactivity Disorder (ADHD) have prominent deficits in sustained attention that manifest as elevated intra-individual response variability and poor decision-making. Influential neurocognitive models have linked attentional fluctuations to aberrant brain dynamics, but these models have not been tested with computationally rigorous procedures. Here we use a Research Domain Criteria approach, drift-diffusion modeling of behavior, and a novel Bayesian Switching Dynamic System unsupervised learning algorithm, with ultrafast temporal resolution (490 ms) whole-brain task-fMRI data, to investigate latent brain state dynamics of salience, frontoparietal, and default mode networks and their relation to response variability, latent decision-making processes, and inattention. Our analyses revealed that occurrence of a task-optimal latent brain state predicted decreased intra-individual response variability and increased evidence accumulation related to decision-making. In contrast, occurrence and dwell time of a non-optimal latent brain state predicted inattention symptoms and furthermore, in a categorical analysis, distinguished children with ADHD from controls. Importantly, functional connectivity between salience and frontoparietal networks predicted rate of evidence accumulation to a decision threshold, whereas functional connectivity between salience and default mode networks predicted inattention. Taken together, our computational modeling reveals dissociable latent brain state features underlying response variability, impaired decision-making, and inattentional symptoms common to ADHD. Our findings provide novel insights into the neurobiology of attention deficits in children.
患有注意缺陷多动障碍(ADHD)的儿童在持续性注意力方面存在明显缺陷,表现为个体内反应变异性增加和决策能力差。有影响力的神经认知模型将注意力波动与异常大脑动力学联系起来,但这些模型尚未通过计算严格的程序进行测试。在这里,我们使用研究领域标准方法、行为漂移扩散建模和一种新颖的贝叶斯切换动态系统无监督学习算法,以及超快时间分辨率(490ms)的全脑任务 fMRI 数据,来研究突显、额顶叶和默认模式网络的潜在大脑状态动力学及其与反应变异性、潜在决策过程和注意力不集中的关系。我们的分析表明,任务最优潜在大脑状态的出现预测了个体内反应变异性的降低和与决策相关的证据积累的增加。相比之下,非最优潜在大脑状态的出现和停留时间预测了注意力不集中的症状,并且在分类分析中,将 ADHD 儿童与对照组区分开来。重要的是,突显和额顶叶网络之间的功能连接预测了证据积累到决策阈值的速度,而突显和默认模式网络之间的功能连接预测了注意力不集中。总之,我们的计算模型揭示了 ADHD 常见的反应变异性、决策能力受损和注意力不集中症状背后的可分离潜在大脑状态特征。我们的研究结果为儿童注意力缺陷的神经生物学提供了新的见解。