Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Nat Commun. 2018 Jun 27;9(1):2505. doi: 10.1038/s41467-018-04723-6.
Human cognition is influenced not only by external task demands but also latent mental processes and brain states that change over time. Here, we use novel Bayesian switching dynamical systems algorithm to identify hidden brain states and determine that these states are only weakly aligned with external task conditions. We compute state transition probabilities and demonstrate how dynamic transitions between hidden states allow flexible reconfiguration of functional brain circuits. Crucially, we identify latent transient brain states and dynamic functional circuits that are optimal for cognition and show that failure to engage these states in a timely manner is associated with poorer task performance and weaker decision-making dynamics. We replicate findings in a large sample (N = 122) and reveal a robust link between cognition and flexible latent brain state dynamics. Our study demonstrates the power of switching dynamical systems models for investigating hidden dynamic brain states and functional interactions underlying human cognition.
人类认知不仅受到外部任务需求的影响,还受到随时间变化的潜在心理过程和大脑状态的影响。在这里,我们使用新颖的贝叶斯切换动力系统算法来识别隐藏的大脑状态,并确定这些状态与外部任务条件只有微弱的关联。我们计算状态转移概率,并展示隐藏状态之间的动态转换如何允许灵活地重新配置功能大脑回路。至关重要的是,我们确定了对认知最有利的潜在瞬态大脑状态和动态功能回路,并表明未能及时参与这些状态与较差的任务表现和较弱的决策动态有关。我们在一个大样本(N=122)中复制了这些发现,并揭示了认知与灵活的潜在大脑状态动态之间的稳健联系。我们的研究表明,切换动力系统模型在研究隐藏的动态大脑状态和人类认知的功能相互作用方面具有强大的作用。