Suppr超能文献

具有一维超晶格的石墨烯中的各向异性能带展平。

Anisotropic band flattening in graphene with one-dimensional superlattices.

作者信息

Li Yutao, Dietrich Scott, Forsythe Carlos, Taniguchi Takashi, Watanabe Kenji, Moon Pilkyung, Dean Cory R

机构信息

Department of Physics, Columbia University, New York, NY, USA.

Department of Physics, Villanova University, Villanova, PA, USA.

出版信息

Nat Nanotechnol. 2021 May;16(5):525-530. doi: 10.1038/s41565-021-00849-9. Epub 2021 Feb 15.

Abstract

Patterning graphene with a spatially periodic potential provides a powerful means to modify its electronic properties. In particular, in twisted bilayers, coupling to the resulting moiré superlattice yields an isolated flat band that hosts correlated many-body phases. However, both the symmetry and strength of the effective moiré potential are constrained by the constituent crystals, limiting its tunability. Here, we have exploited the technique of dielectric patterning to subject graphene to a one-dimensional electrostatic superlattice (SL). We observed the emergence of multiple Dirac cones and found evidence that with increasing SL potential the main and satellite Dirac cones are sequentially flattened in the direction parallel to the SL basis vector, behaviour resulting from the interaction between the one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-dimensional materials, a long-desired property for novel electronic and optical applications. Moreover, these findings offer a new approach to engineering flat energy bands where electron interactions can lead to emergent properties.

摘要

用空间周期性势对石墨烯进行图案化处理,为改变其电子特性提供了一种强大的手段。特别是在扭曲双层石墨烯中,与由此产生的莫尔超晶格耦合会产生一个孤立的平带,该平带承载着相关的多体相。然而,有效莫尔势的对称性和强度都受到组成晶体的限制,从而限制了其可调性。在这里,我们利用介电图案化技术使石墨烯受到一维静电超晶格(SL)的作用。我们观察到多个狄拉克锥的出现,并发现证据表明,随着SL势的增加,主狄拉克锥和卫星狄拉克锥在平行于SL基矢的方向上依次变平,这种行为是由一维SL电势与石墨烯中无质量狄拉克费米子之间的相互作用导致的。我们的结果证明了在高迁移率二维材料中诱导可调各向异性的能力,这是新型电子和光学应用长期以来所期望的特性。此外,这些发现为设计平能带提供了一种新方法,在平能带中电子相互作用可导致出现新特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验