Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
Nucleic Acids Res. 2021 Mar 18;49(5):2537-2551. doi: 10.1093/nar/gkab058.
Nucleosome-nucleosome interactions drive the folding of nucleosomal arrays into dense chromatin fibers. A better physical account of the folding of chromatin fibers is necessary to understand the role of chromatin in regulating DNA transactions. Here, we studied the unfolding pathway of regular chromatin fibers as a function of single base pair increments in linker length, using both rigid base-pair Monte Carlo simulations and single-molecule force spectroscopy. Both computational and experimental results reveal a periodic variation of the folding energies due to the limited flexibility of the linker DNA. We show that twist is more restrictive for nucleosome stacking than bend, and find the most stable stacking interactions for linker lengths of multiples of 10 bp. We analyzed nucleosomes stacking in both 1- and 2-start topologies and show that stacking preferences are determined by the length of the linker DNA. Moreover, we present evidence that the sequence of the linker DNA also modulates nucleosome stacking and that the effect of the deletion of the H4 tail depends on the linker length. Importantly, these results imply that nucleosome positioning in vivo not only affects the phasing of nucleosomes relative to DNA but also directs the higher-order structure of chromatin.
核小体-核小体相互作用驱动核小体阵列折叠成致密的染色质纤维。为了理解染色质在调控 DNA 转录中的作用,我们需要更好地描述染色质纤维的折叠机制。在这里,我们研究了在连接子长度上逐个碱基对增加的情况下,常规染色质纤维的展开途径,同时使用了刚性碱基对蒙特卡罗模拟和单分子力谱技术。计算和实验结果都揭示了由于连接子 DNA 有限的柔韧性,折叠能呈现周期性变化。我们发现,对于核小体堆积来说,扭转比弯曲更受限制,并且在连接子长度为 10bp 的倍数时,发现了最稳定的堆积相互作用。我们分析了 1 型和 2 型拓扑结构中的核小体堆积情况,并表明堆积偏好取决于连接子 DNA 的长度。此外,我们提供的证据表明,连接子 DNA 的序列也调节核小体堆积,并且 H4 尾巴缺失的影响取决于连接子长度。重要的是,这些结果表明,体内的核小体定位不仅影响核小体相对于 DNA 的相位,而且还指导染色质的高级结构。