From the Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033.
Biological Faculty, Department of Molecular Biology, Lomonosov Moscow State University, 119192 Moscow, Russia, and.
J Biol Chem. 2019 Mar 15;294(11):4233-4246. doi: 10.1074/jbc.RA118.006412. Epub 2019 Jan 10.
The length of linker DNA that separates nucleosomes is highly variable, but its mechanistic role in modulating chromatin structure and functions remains unknown. Here, we established an experimental system using circular arrays of positioned nucleosomes to investigate whether variations in nucleosome linker length could affect nucleosome folding, self-association, and interactions. We conducted EM, DNA topology, native electrophoretic assays, and Mg-dependent self-association assays to study intrinsic folding of linear and circular nucleosome arrays with linker DNA length of 36 bp and 41 bp (3.5 turns and 4 turns of DNA double helix, respectively). These experiments revealed that potential artifacts arising from open DNA ends and full DNA relaxation in the linear arrays do not significantly affect overall chromatin compaction and self-association. We observed that the 0.5 DNA helical turn difference between the two DNA linker lengths significantly affects DNA topology and nucleosome interactions. In particular, the 41-bp linkers promoted interactions between any two nucleosome beads separated by one bead as expected for a zigzag fiber, whereas the 36-bp linkers promoted interactions between two nucleosome beads separated by two other beads and also reduced negative superhelicity. Monte Carlo simulations accurately reproduce periodic modulations of chromatin compaction, DNA topology, and internucleosomal interactions with a 10-bp periodicity. We propose that the nucleosome spacing and associated chromatin structure modulations may play an important role in formation of different chromatin epigenetic states, thus suggesting implications for how chromatin accessibility to DNA-binding factors and the RNA transcription machinery is regulated.
核小体之间连接 DNA 的长度变化很大,但它在调节染色质结构和功能方面的机械作用尚不清楚。在这里,我们建立了一个使用定位核小体的圆形阵列的实验系统,以研究核小体连接长度的变化是否会影响核小体折叠、自组装和相互作用。我们进行了 EM、DNA 拓扑、天然电泳分析和 Mg 依赖性自组装分析,以研究具有 36bp 和 41bp 连接 DNA 长度的线性和圆形核小体阵列的固有折叠(分别为 DNA 双螺旋的 3.5 圈和 4 圈)。这些实验表明,线性阵列中开放 DNA 末端和完全 DNA 松弛引起的潜在假象不会显著影响整体染色质压缩和自组装。我们观察到,两种 DNA 连接长度相差 0.5 个 DNA 螺旋圈显著影响 DNA 拓扑和核小体相互作用。特别是,41bp 连接体促进了两个核小体珠之间的相互作用,这与预期的锯齿形纤维一致,而 36bp 连接体促进了两个核小体珠之间通过两个其他珠的相互作用,并且还降低了负超螺旋。蒙特卡罗模拟准确地再现了染色质压缩、DNA 拓扑和核小体相互作用的周期性调制,具有 10bp 的周期性。我们提出,核小体间隔和相关的染色质结构调制可能在不同染色质表观遗传状态的形成中发挥重要作用,从而暗示了染色质对 DNA 结合因子和 RNA 转录机制的可及性的调节方式。