Kim Taeyeon, Kim Juno, Ke Xian-Sheng, Brewster James T, Oh Juwon, Sessler Jonathan L, Kim Dongho
Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Republic of Korea.
Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, United States.
Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9379-9383. doi: 10.1002/anie.202017332. Epub 2021 Mar 12.
Charge-recombination processes are critical for photovoltaic applications and should be suppressed for efficient charge transport. Here, we report that an applied magnetic field (0-1 T) can be used control the charge-recombination dynamics in an expanded rosarin-C complex. In the low magnetic field regime (<100 mT), the charge-recombination rate slows down due to hyperfine coupling, as inferred from transient absorption spectroscopic analyses. In contrast, in the high field regime, i.e., over 500 mT, the charge-recombination rate recovers and increases because the Δg mechanism facilitates spin conversion to a triplet charge-separated state (S to T ) that undergoes rapid charge-recombination to a localized rosarin triplet state. Therefore, we highlight the charge-recombination rate and the localized triplet state population can be modulated by the magnetic field in charge donor/acceptor non-covalent complexes.
电荷复合过程对于光伏应用至关重要,为实现高效电荷传输应予以抑制。在此,我们报告施加的磁场(0 - 1 T)可用于控制扩展的玫瑰红素 - C 配合物中的电荷复合动力学。在低磁场区域(<100 mT),通过瞬态吸收光谱分析推断,由于超精细耦合,电荷复合速率减慢。相反,在高磁场区域,即超过 500 mT 时,电荷复合速率恢复并增加,因为 Δg 机制促进自旋转换为三重态电荷分离态(从单重态到三重态),该三重态会迅速电荷复合为局域化的玫瑰红素三重态。因此,我们强调在电荷供体/受体非共价配合物中,电荷复合速率和局域化三重态的数量可通过磁场进行调制。