Suppr超能文献

用于靶向多模态 PET-CT 肺肿瘤分割的多模态空间注意模块。

Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung Tumor Segmentation.

出版信息

IEEE J Biomed Health Inform. 2021 Sep;25(9):3507-3516. doi: 10.1109/JBHI.2021.3059453. Epub 2021 Sep 3.

Abstract

Multimodal positron emission tomography-computed tomography (PET-CT) is used routinely in the assessment of cancer. PET-CT combines the high sensitivity for tumor detection of PET and anatomical information from CT. Tumor segmentation is a critical element of PET-CT but at present, the performance of existing automated methods for this challenging task is low. Segmentation tends to be done manually by different imaging experts, which is labor-intensive and prone to errors and inconsistency. Previous automated segmentation methods largely focused on fusing information that is extracted separately from the PET and CT modalities, with the underlying assumption that each modality contains complementary information. However, these methods do not fully exploit the high PET tumor sensitivity that can guide the segmentation. We introduce a deep learning-based framework in multimodal PET-CT segmentation with a multimodal spatial attention module (MSAM). The MSAM automatically learns to emphasize regions (spatial areas) related to tumors and suppress normal regions with physiologic high-uptake from the PET input. The resulting spatial attention maps are subsequently employed to target a convolutional neural network (CNN) backbone for segmentation of areas with higher tumor likelihood from the CT image. Our experimental results on two clinical PET-CT datasets of non-small cell lung cancer (NSCLC) and soft tissue sarcoma (STS) validate the effectiveness of our framework in these different cancer types. We show that our MSAM, with a conventional U-Net backbone, surpasses the state-of-the-art lung tumor segmentation approach by a margin of 7.6% in Dice similarity coefficient (DSC).

摘要

正电子发射断层扫描-计算机断层扫描(PET-CT)在癌症评估中被常规使用。PET-CT 将 PET 对肿瘤检测的高灵敏度与 CT 的解剖信息相结合。肿瘤分割是 PET-CT 的关键要素,但目前,现有自动化方法在这项具有挑战性的任务中的性能较低。分割通常由不同的成像专家手动完成,这既耗费人力,又容易出错且不一致。以前的自动化分割方法主要集中于融合分别从 PET 和 CT 模式提取的信息,其基本假设是每个模式都包含互补的信息。然而,这些方法并没有充分利用可以指导分割的高 PET 肿瘤灵敏度。我们在多模态 PET-CT 分割中引入了一种基于深度学习的框架,该框架具有多模态空间注意力模块(MSAM)。MSAM 自动学习强调与肿瘤相关的区域(空间区域),并从 PET 输入中抑制生理高摄取的正常区域。然后,将所得的空间注意力图用于针对 CT 图像中肿瘤可能性较高的区域的卷积神经网络(CNN)主干进行分割。我们在两个非小细胞肺癌(NSCLC)和软组织肉瘤(STS)的临床 PET-CT 数据集上的实验结果验证了我们的框架在这些不同癌症类型中的有效性。我们表明,我们的 MSAM 与传统的 U-Net 主干结合,在 Dice 相似系数(DSC)方面超过了最先进的肺肿瘤分割方法 7.6%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验