Suppr超能文献

基于多模态全卷积神经网络的 PET/CT 肿瘤共分割。

Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network.

机构信息

Key Laboratory of Image Processing and Intelligent Control of Ministry of Education of China, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

出版信息

Phys Med Biol. 2018 Dec 21;64(1):015011. doi: 10.1088/1361-6560/aaf44b.

Abstract

Automatic tumor segmentation from medical images is an important step for computer-aided cancer diagnosis and treatment. Recently, deep learning has been successfully applied to this task, leading to state-of-the-art performance. However, most of existing deep learning segmentation methods only work for a single imaging modality. PET/CT scanner is nowadays widely used in the clinic, and is able to provide both metabolic information and anatomical information through integrating PET and CT into the same utility. In this study, we proposed a novel multi-modality segmentation method based on a 3D fully convolutional neural network (FCN), which is capable of taking account of both PET and CT information simultaneously for tumor segmentation. The network started with a multi-task training module, in which two parallel sub-segmentation architectures constructed using deep convolutional neural networks (CNNs) were designed to automatically extract feature maps from PET and CT respectively. A feature fusion module was subsequently designed based on cascaded convolutional blocks, which re-extracted features from PET/CT feature maps using a weighted cross entropy minimization strategy. The tumor mask was obtained as the output at the end of the network using a softmax function. The effectiveness of the proposed method was validated on a clinic PET/CT dataset of 84 patients with lung cancer. The results demonstrated that the proposed network was effective, fast and robust and achieved significantly performance gain over CNN-based methods and traditional methods using PET or CT only, two V-net based co-segmentation methods, two variational co-segmentation methods based on fuzzy set theory and a deep learning co-segmentation method using W-net.

摘要

从医学图像中自动分割肿瘤是计算机辅助癌症诊断和治疗的重要步骤。最近,深度学习已成功应用于这项任务,取得了最先进的性能。然而,现有的大多数深度学习分割方法仅适用于单一成像模式。PET/CT 扫描仪在临床上得到了广泛的应用,它能够通过将 PET 和 CT 整合到同一个设备中提供代谢信息和解剖信息。在这项研究中,我们提出了一种新的基于 3D 全卷积神经网络(FCN)的多模态分割方法,该方法能够同时考虑肿瘤的 PET 和 CT 信息。该网络从一个多任务训练模块开始,该模块使用深度卷积神经网络(CNNs)构建了两个并行的子分割架构,分别自动从 PET 和 CT 中提取特征图。随后,基于级联卷积块设计了一个特征融合模块,该模块使用加权交叉熵最小化策略从 PET/CT 特征图中重新提取特征。最后,使用 softmax 函数作为输出获得肿瘤掩模。我们在一个包含 84 名肺癌患者的临床 PET/CT 数据集上验证了所提出方法的有效性。结果表明,所提出的网络是有效、快速和稳健的,与基于 CNN 的方法以及仅使用 PET 或 CT 的传统方法相比,具有显著的性能提升,优于两个基于 V-net 的共分割方法、两个基于模糊集理论的变分共分割方法以及一个使用 W-net 的深度学习共分割方法。

相似文献

2
Recurrent feature fusion learning for multi-modality pet-ct tumor segmentation.用于多模态PET-CT肿瘤分割的循环特征融合学习
Comput Methods Programs Biomed. 2021 May;203:106043. doi: 10.1016/j.cmpb.2021.106043. Epub 2021 Mar 11.
3
Deep Learning for Variational Multimodality Tumor Segmentation in PET/CT.用于PET/CT中变分多模态肿瘤分割的深度学习
Neurocomputing (Amst). 2020 Jun 7;392:277-295. doi: 10.1016/j.neucom.2018.10.099. Epub 2019 Apr 24.
9

引用本文的文献

4
Breast tumor segmentation via deep correlation analysis of multi-sequence MRI.基于多序列 MRI 的深度相关分析进行乳腺肿瘤分割。
Med Biol Eng Comput. 2024 Dec;62(12):3801-3814. doi: 10.1007/s11517-024-03166-0. Epub 2024 Jul 20.
5
Machine Learning in Diagnosis and Prognosis of Lung Cancer by PET-CT.PET-CT在肺癌诊断与预后中的机器学习应用
Cancer Manag Res. 2024 Apr 24;16:361-375. doi: 10.2147/CMAR.S451871. eCollection 2024.

本文引用的文献

4
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
5
Classification of CT brain images based on deep learning networks.基于深度学习网络的 CT 脑图像分类。
Comput Methods Programs Biomed. 2017 Jan;138:49-56. doi: 10.1016/j.cmpb.2016.10.007. Epub 2016 Oct 20.
6
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
7
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
8
Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images.随机游走和图割在 PET-CT 图像中肺肿瘤的共分割。
IEEE Trans Image Process. 2015 Dec;24(12):5854-67. doi: 10.1109/TIP.2015.2488902. Epub 2015 Oct 8.
9
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
10
Optimal co-segmentation of tumor in PET-CT images with context information.基于上下文信息的 PET-CT 图像肿瘤最佳共分割。
IEEE Trans Med Imaging. 2013 Sep;32(9):1685-97. doi: 10.1109/TMI.2013.2263388. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验