Suppr超能文献

Spec2Vec:通过学习结构关系提高质谱相似性评分。

Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships.

机构信息

Netherlands eScience Center, Amsterdam, the Netherlands.

School of Computing Science, University of Glasgow, Glasgow, United Kingdom.

出版信息

PLoS Comput Biol. 2021 Feb 16;17(2):e1008724. doi: 10.1371/journal.pcbi.1008724. eCollection 2021 Feb.

Abstract

Spectral similarity is used as a proxy for structural similarity in many tandem mass spectrometry (MS/MS) based metabolomics analyses such as library matching and molecular networking. Although weaknesses in the relationship between spectral similarity scores and the true structural similarities have been described, little development of alternative scores has been undertaken. Here, we introduce Spec2Vec, a novel spectral similarity score inspired by a natural language processing algorithm-Word2Vec. Spec2Vec learns fragmental relationships within a large set of spectral data to derive abstract spectral embeddings that can be used to assess spectral similarities. Using data derived from GNPS MS/MS libraries including spectra for nearly 13,000 unique molecules, we show how Spec2Vec scores correlate better with structural similarity than cosine-based scores. We demonstrate the advantages of Spec2Vec in library matching and molecular networking. Spec2Vec is computationally more scalable allowing structural analogue searches in large databases within seconds.

摘要

光谱相似性在许多基于串联质谱(MS/MS)的代谢组学分析中被用作结构相似性的替代指标,如库匹配和分子网络分析。尽管已经描述了光谱相似性评分与真实结构相似性之间的关系存在弱点,但很少有替代评分的发展。在这里,我们介绍了 Spec2Vec,这是一种受自然语言处理算法 - Word2Vec 启发的新型光谱相似性评分。Spec2Vec 从一大组光谱数据中学习片段关系,以得出可以用于评估光谱相似性的抽象光谱嵌入。使用来自 GNPS MS/MS 库的数据,包括近 13000 个独特分子的光谱,我们展示了 Spec2Vec 评分与结构相似性的相关性如何优于基于余弦的评分。我们展示了 Spec2Vec 在库匹配和分子网络分析中的优势。Spec2Vec 在计算上更具可扩展性,可以在几秒钟内对大型数据库中的结构类似物进行搜索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb02/7909622/b3fb6137a8b1/pcbi.1008724.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验