使用液相萃取表面分析-串联质谱法(LESA-MS/MS)对蛋白质吸附到大量聚合物文库上进行高通量分析。

High-Throughput Analysis of Protein Adsorption to a Large Library of Polymers Using Liquid Extraction Surface Analysis-Tandem Mass Spectrometry (LESA-MS/MS).

作者信息

Meurs Joris, Nasir Aishah, Figueredo Grazziela P, Burroughs Laurence, Abdelrazig Salah A, Denning Chris, Winkler David A, Barrett David A, Kim Dong-Hyun, Alexander Morgan R

机构信息

School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, U.K.

Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K.

出版信息

Anal Chem. 2025 Jun 24;97(24):12776-12785. doi: 10.1021/acs.analchem.5c01636. Epub 2025 Jun 10.

Abstract

Biomaterials play an important role in medicine from contact lenses to joint replacements. High-throughput screening coupled with machine learning has identified synthetic polymers that prevent bacterial biofilm formation, prevent fungal cell attachment, control immune cell attachment and phenotype, or direct stem cell fate. In-vitro preadsorption of proteins from culture medium plays a pivotal role in controlling cell response. However, there is a paucity of studies on the screening of protein adsorption into material libraries. Here, we show how quantitative analysis of protein adsorption on a 208-member polymer microarray can be achieved using liquid extraction surface analysis, combined with an adaptation of the droplet microarray (DMA) approach and tandem mass spectrometry (LESA-MS/MS) for protein identification. This study uses a fully defined cell culture medium containing only four proteins (Essential 8) to demonstrate the feasibility of the analysis approach. Our findings show that we can generate quantitative and predictive machine learning models of protein adsorption that elucidate key polymer features that describe the relationship between surface chemistry and protein adsorption. This information is of use for the rational design of new materials with bespoke protein attachment properties for biomaterials, medical devices, or in vitro compound screening.

摘要

生物材料在医学领域发挥着重要作用,从隐形眼镜到关节置换皆是如此。高通量筛选与机器学习相结合,已鉴定出能防止细菌生物膜形成、阻止真菌细胞附着、控制免疫细胞附着及表型,或引导干细胞命运的合成聚合物。培养基中蛋白质的体外预吸附在控制细胞反应中起着关键作用。然而,关于筛选蛋白质吸附到材料库中的研究却很少。在此,我们展示了如何使用液体萃取表面分析,结合液滴微阵列(DMA)方法的改进和串联质谱(LESA-MS/MS)进行蛋白质鉴定,实现对208种聚合物微阵列上蛋白质吸附的定量分析。本研究使用仅含四种蛋白质(Essential 8)的完全限定细胞培养基来证明该分析方法的可行性。我们的研究结果表明,我们可以生成蛋白质吸附的定量和预测性机器学习模型,阐明描述表面化学与蛋白质吸附之间关系的关键聚合物特征。这些信息有助于合理设计具有定制蛋白质附着特性的新材料,用于生物材料、医疗设备或体外化合物筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eee/12199226/cba10695531d/ac5c01636_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索