Suppr超能文献

人类中不平衡异或时间序列的统计学习。

Statistical learning of unbalanced exclusive-or temporal sequences in humans.

机构信息

Department of Psychology, Université Côte d'Azur, CNRS, BCL, Nice, France.

出版信息

PLoS One. 2021 Feb 16;16(2):e0246826. doi: 10.1371/journal.pone.0246826. eCollection 2021.

Abstract

A pervasive issue in statistical learning has been to determine the parameters of regularity extraction. Our hypothesis was that the extraction of transitional probabilities can prevail over frequency if the task involves prediction. Participants were exposed to four repeated sequences of three stimuli (XYZ) with each stimulus corresponding to the position of a red dot on a touch screen that participants were required to touch sequentially. The temporal and spatial structure of the positions corresponded to a serial version of the exclusive-or (XOR) that allowed testing of the respective effect of frequency and first- and second-order transitional probabilities. The XOR allowed the first-order transitional probability to vary while being not completely related to frequency and to vary while the second-order transitional probability was fixed (p(Z|X, Y) = 1). The findings show that first-order transitional probability prevails over frequency to predict the second stimulus from the first and that it also influences the prediction of the third item despite the presence of second-order transitional probability that could have offered a certain prediction of the third item. These results are particularly informative in light of statistical learning models.

摘要

统计学习中的一个普遍问题是确定规则提取的参数。我们的假设是,如果任务涉及预测,那么过渡概率的提取可以胜过频率。参与者接触到四个重复的三个刺激序列(XYZ),每个刺激对应于触摸屏幕上红点的位置,参与者需要按顺序触摸。位置的时间和空间结构对应于异或(XOR)的串行版本,允许测试频率以及一阶和二阶过渡概率的各自效果。XOR 允许一阶过渡概率变化,而与频率不完全相关,并允许二阶过渡概率固定时变化(p(Z | X,Y)= 1)。研究结果表明,一阶过渡概率胜过频率,可根据第一个刺激预测第二个刺激,而且即使存在二阶过渡概率也会影响第三个项目的预测,二阶过渡概率可以对第三个项目提供一定的预测。鉴于统计学习模型,这些结果特别有启发性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9b/7886115/1f18b51e28a9/pone.0246826.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验