Univ Rennes, INSERM, LTSI - UMR 1099, Campus Beaulieu, Rennes, F-35000, France.
Project Team MathNeuro, INRIA-CNRS-UNS, 2004 route des Lucioles-BP 93, Sophia Antipolis, 06902, France.
J Comput Neurosci. 2022 Nov;50(4):537-557. doi: 10.1007/s10827-022-00830-y. Epub 2022 Aug 10.
An important function of the brain is to predict which stimulus is likely to occur based on the perceived cues. The present research studied the branching behavior of a computational network model of populations of excitatory and inhibitory neurons, both analytically and through simulations. Results show how synaptic efficacy, retroactive inhibition and short-term synaptic depression determine the dynamics of selection between different branches predicting sequences of stimuli of different probabilities. Further results show that changes in the probability of the different predictions depend on variations of neuronal gain. Such variations allow the network to optimize the probability of its predictions to changing probabilities of the sequences without changing synaptic efficacy.
大脑的一个重要功能是根据感知到的线索预测哪些刺激可能发生。本研究通过分析和模拟,研究了兴奋性和抑制性神经元群体的计算网络模型的分支行为。结果表明,突触效能、回溯抑制和短期突触抑制如何决定不同分支之间的选择动态,这些分支预测不同概率的刺激序列。进一步的结果表明,不同预测的概率变化取决于神经元增益的变化。这种变化使网络能够优化其预测的概率,以适应序列概率的变化,而无需改变突触效能。