Suppr超能文献

目标尖峰模式可实现高效且在生物学上合理的复杂时间任务学习。

Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks.

机构信息

SISSA-International School for Advanced Studies, Trieste, Italy.

INFN, Sezione di Roma, Rome, Italy.

出版信息

PLoS One. 2021 Feb 16;16(2):e0247014. doi: 10.1371/journal.pone.0247014. eCollection 2021.

Abstract

Recurrent spiking neural networks (RSNN) in the brain learn to perform a wide range of perceptual, cognitive and motor tasks very efficiently in terms of energy consumption and their training requires very few examples. This motivates the search for biologically inspired learning rules for RSNNs, aiming to improve our understanding of brain computation and the efficiency of artificial intelligence. Several spiking models and learning rules have been proposed, but it remains a challenge to design RSNNs whose learning relies on biologically plausible mechanisms and are capable of solving complex temporal tasks. In this paper, we derive a learning rule, local to the synapse, from a simple mathematical principle, the maximization of the likelihood for the network to solve a specific task. We propose a novel target-based learning scheme in which the learning rule derived from likelihood maximization is used to mimic a specific spatio-temporal spike pattern that encodes the solution to complex temporal tasks. This method makes the learning extremely rapid and precise, outperforming state of the art algorithms for RSNNs. While error-based approaches, (e.g. e-prop) trial after trial optimize the internal sequence of spikes in order to progressively minimize the MSE we assume that a signal randomly projected from an external origin (e.g. from other brain areas) directly defines the target sequence. This facilitates the learning procedure since the network is trained from the beginning to reproduce the desired internal sequence. We propose two versions of our learning rule: spike-dependent and voltage-dependent. We find that the latter provides remarkable benefits in terms of learning speed and robustness to noise. We demonstrate the capacity of our model to tackle several problems like learning multidimensional trajectories and solving the classical temporal XOR benchmark. Finally, we show that an online approximation of the gradient ascent, in addition to guaranteeing complete locality in time and space, allows learning after very few presentations of the target output. Our model can be applied to different types of biological neurons. The analytically derived plasticity learning rule is specific to each neuron model and can produce a theoretical prediction for experimental validation.

摘要

大脑中的递归尖峰神经网络 (RSNN) 在能量消耗方面非常高效地学习执行广泛的感知、认知和运动任务,并且它们的训练只需要很少的示例。这激发了对 RSNN 的生物启发学习规则的研究,旨在提高我们对大脑计算的理解和人工智能的效率。已经提出了几种尖峰模型和学习规则,但设计学习依赖于合理生物学机制且能够解决复杂时间任务的 RSNN 仍然是一个挑战。在本文中,我们从一个简单的数学原理(网络解决特定任务的可能性最大化)推导出一个局部突触的学习规则。我们提出了一种新的基于目标的学习方案,其中从可能性最大化推导出的学习规则用于模拟编码复杂时间任务解决方案的特定时空尖峰模式。这种方法使学习变得非常快速和精确,优于用于 RSNN 的最先进算法。虽然基于错误的方法(例如 e-prop)一次又一次地trial-and-error 优化内部尖峰序列,以逐步最小化均方误差,但我们假设从外部源(例如其他大脑区域)随机投射的信号直接定义目标序列。这使得学习过程变得容易,因为网络从一开始就被训练来复制所需的内部序列。我们提出了我们的学习规则的两种版本:基于尖峰的和基于电压的。我们发现后者在学习速度和对噪声的鲁棒性方面提供了显著的优势。我们展示了我们的模型解决多维轨迹学习和解决经典的时间 XOR 基准问题的能力。最后,我们表明,梯度上升的在线逼近除了保证时间和空间上的完全局部性外,还允许在很少呈现目标输出后进行学习。我们的模型可以应用于不同类型的生物神经元。分析推导的可塑性学习规则是特定于每个神经元模型的,可以为实验验证提供理论预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3021/7886200/a261c6c4e52d/pone.0247014.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验