Suppr超能文献

一种用于稳健序列识别的脉冲神经网络系统。

A Spiking Neural Network System for Robust Sequence Recognition.

作者信息

Yu Qiang, Yan Rui, Tang Huajin, Tan Kay Chen, Li Haizhou

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Mar;27(3):621-35. doi: 10.1109/TNNLS.2015.2416771. Epub 2015 Apr 14.

Abstract

This paper proposes a biologically plausible network architecture with spiking neurons for sequence recognition. This architecture is a unified and consistent system with functional parts of sensory encoding, learning, and decoding. This is the first systematic model attempting to reveal the neural mechanisms considering both the upstream and the downstream neurons together. The whole system is a consistent temporal framework, where the precise timing of spikes is employed for information processing and cognitive computing. Experimental results show that the system is competent to perform the sequence recognition, being robust to noisy sensory inputs and invariant to changes in the intervals between input stimuli within a certain range. The classification ability of the temporal learning rule used in the system is investigated through two benchmark tasks that outperform the other two widely used learning rules for classification. The results also demonstrate the computational power of spiking neurons over perceptrons for processing spatiotemporal patterns. In summary, the system provides a general way with spiking neurons to encode external stimuli into spatiotemporal spikes, to learn the encoded spike patterns with temporal learning rules, and to decode the sequence order with downstream neurons. The system structure would be beneficial for developments in both hardware and software.

摘要

本文提出了一种具有脉冲神经元的、生物学上合理的网络架构用于序列识别。该架构是一个具有感觉编码、学习和解码功能部分的统一且一致的系统。这是第一个试图同时揭示上游和下游神经元神经机制的系统模型。整个系统是一个一致的时间框架,其中脉冲的精确时间用于信息处理和认知计算。实验结果表明,该系统能够执行序列识别,对有噪声的感觉输入具有鲁棒性,并且在一定范围内对输入刺激之间的间隔变化具有不变性。通过两个基准任务研究了系统中使用的时间学习规则的分类能力,这两个任务的表现优于其他两个广泛使用的分类学习规则。结果还证明了脉冲神经元在处理时空模式方面相对于感知器的计算能力。总之,该系统提供了一种通用方法,利用脉冲神经元将外部刺激编码为时空脉冲,利用时间学习规则学习编码的脉冲模式,并利用下游神经元解码序列顺序。该系统结构将有利于硬件和软件的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验