Suppr超能文献

MAP-SNN:将具有多样性、适应性和可塑性的脉冲活动映射到具有生物合理性的脉冲神经网络中。

MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks.

作者信息

Yu Chengting, Du Yangkai, Chen Mufeng, Wang Aili, Wang Gaoang, Li Erping

机构信息

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China.

Zhejiang University - University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining, China.

出版信息

Front Neurosci. 2022 Sep 20;16:945037. doi: 10.3389/fnins.2022.945037. eCollection 2022.

Abstract

Spiking Neural Networks (SNNs) are considered more biologically realistic and power-efficient as they imitate the fundamental mechanism of the human brain. Backpropagation (BP) based SNN learning algorithms that utilize deep learning frameworks have achieved good performance. However, those BP-based algorithms partially ignore bio-interpretability. In modeling spike activity for biological plausible BP-based SNNs, we examine three properties: multiplicity, adaptability, and plasticity (MAP). Regarding multiplicity, we propose a Multiple-Spike Pattern (MSP) with multiple-spike transmission to improve model robustness in discrete time iterations. To realize adaptability, we adopt Spike Frequency Adaption (SFA) under MSP to reduce spike activities for enhanced efficiency. For plasticity, we propose a trainable state-free synapse that models spike response current to increase the diversity of spiking neurons for temporal feature extraction. The proposed SNN model achieves competitive performances on the N-MNIST and SHD neuromorphic datasets. In addition, experimental results demonstrate that the proposed three aspects are significant to iterative robustness, spike efficiency, and the capacity to extract spikes' temporal features. In summary, this study presents a realistic approach for bio-inspired spike activity with MAP, presenting a novel neuromorphic perspective for incorporating biological properties into spiking neural networks.

摘要

脉冲神经网络(SNNs)因其模仿人类大脑的基本机制而被认为更具生物真实性和能源效率。基于反向传播(BP)的SNN学习算法利用深度学习框架已取得了良好的性能。然而,那些基于BP的算法部分忽略了生物可解释性。在为基于生物合理性的BP-SNNs对脉冲活动进行建模时,我们研究了三个特性:多样性、适应性和可塑性(MAP)。关于多样性,我们提出了一种具有多脉冲传输的多脉冲模式(MSP),以提高离散时间迭代中模型的鲁棒性。为了实现适应性,我们在MSP下采用脉冲频率适应(SFA)来减少脉冲活动以提高效率。对于可塑性,我们提出了一种可训练的无状态突触,对脉冲响应电流进行建模,以增加脉冲神经元的多样性用于时间特征提取。所提出的SNN模型在N-MNIST和SHD神经形态数据集上取得了有竞争力的性能。此外,实验结果表明,所提出的三个方面对于迭代鲁棒性、脉冲效率以及提取脉冲时间特征的能力具有重要意义。总之,本研究提出了一种具有MAP的受生物启发的脉冲活动的现实方法,为将生物学特性纳入脉冲神经网络提供了一种新颖的神经形态视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c94a/9531034/269679b79b53/fnins-16-945037-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验