Suppr超能文献

金枪鱼机器人:快速线性加速度的流体动力学

Tuna robotics: hydrodynamics of rapid linear accelerations.

作者信息

Thandiackal Robin, White Carl H, Bart-Smith Hilary, Lauder George V

机构信息

Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

Bio-Inspired Engineering Research Laboratory (BIERL), Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22903, USA.

出版信息

Proc Biol Sci. 2021 Feb 24;288(1945):20202726. doi: 10.1098/rspb.2020.2726. Epub 2021 Feb 17.

Abstract

Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of [Formula: see text] at [Formula: see text] tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.

摘要

鱼类在运动 maneuvers 过程中经常加速,但对加速性能的动力学了解甚少。新月形尾鳍鱼类在稳定游泳时利用其新月形尾鳍产生基于升力的推力,但在从静止状态加速时升力有限,因为所需的迎面水流较慢。为了研究在这种行为过程中还会出现哪些其他推力产生机制,我们使用了名为 Tunabot Flex 的机器人系统,它是一个具有受黄鳍金枪鱼启发的身体和尾部轮廓的研究平台。我们从静止状态产生了各种大小的线性加速度(在[公式:见文本]尾拍频率下最大加速度为[公式:见文本]),并记录了瞬时电功率消耗。利用粒子图像测速数据,我们量化了身体运动学和流动模式,然后计算了随时间沿身体的表面压力、推力和机械功率输出。我们发现头部产生净阻力,而后部身体产生显著的推力,这揭示了这种新月形游泳者在从静止状态进行线性加速时,除了基于升力的尾鳍之外的另一种推进机制。使用一个能够同时测量电功率消耗、运动学、流体流动和机械功率输出的实验平台来研究鱼类的加速性能,为理解鱼类和受生物启发的水生机器人系统中的非稳定运动行为提供了新的机会。

相似文献

1
Tuna robotics: hydrodynamics of rapid linear accelerations.
Proc Biol Sci. 2021 Feb 24;288(1945):20202726. doi: 10.1098/rspb.2020.2726. Epub 2021 Feb 17.
2
Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming.
Bioinspir Biomim. 2021 Mar 5;16(2). doi: 10.1088/1748-3190/abb86d.
4
A tale of two fish tails: does a forked tail really perform better than a truncate tail when cruising?
J Exp Biol. 2022 Nov 15;225(22). doi: 10.1242/jeb.244967. Epub 2022 Nov 24.
6
Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
PLoS One. 2017 Mar 31;12(3):e0174740. doi: 10.1371/journal.pone.0174740. eCollection 2017.
7
Hydrodynamics of linear acceleration in bluegill sunfish, .
J Exp Biol. 2018 Nov 30;221(Pt 23):jeb190892. doi: 10.1242/jeb.190892.
8
Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
Soft Robot. 2017 Sep;4(3):202-210. doi: 10.1089/soro.2016.0053. Epub 2017 May 16.
9
Undulating fins produce off-axis thrust and flow structures.
J Exp Biol. 2014 Jan 15;217(Pt 2):201-13. doi: 10.1242/jeb.091520. Epub 2013 Sep 26.
10
Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport.
Proc Biol Sci. 2021 Dec 8;288(1964):20211601. doi: 10.1098/rspb.2021.1601. Epub 2021 Dec 1.

引用本文的文献

2
The tuna keel is a mechanosensory structure.
iScience. 2024 Dec 12;28(1):111578. doi: 10.1016/j.isci.2024.111578. eCollection 2025 Jan 17.
3
A Survey on Reinforcement Learning Methods in Bionic Underwater Robots.
Biomimetics (Basel). 2023 Apr 20;8(2):168. doi: 10.3390/biomimetics8020168.
4
Reconstructing the pressure field around swimming fish using a physics-informed neural network.
J Exp Biol. 2023 Apr 15;226(8). doi: 10.1242/jeb.244983. Epub 2023 Apr 27.
5
In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
Elife. 2023 Feb 6;12:e81392. doi: 10.7554/eLife.81392.
6
Stability and manoeuvrability in animal movement: lessons from biology, modelling and robotics.
Proc Biol Sci. 2022 Jan 26;289(1967):20212492. doi: 10.1098/rspb.2021.2492. Epub 2022 Jan 19.

本文引用的文献

2
Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming.
Bioinspir Biomim. 2021 Mar 5;16(2). doi: 10.1088/1748-3190/abb86d.
3
How zebrafish turn: analysis of pressure force dynamics and mechanical work.
J Exp Biol. 2020 Aug 24;223(Pt 16):jeb223230. doi: 10.1242/jeb.223230.
5
Airfoil-like mechanics generate thrust on the anterior body of swimming fishes.
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10585-10592. doi: 10.1073/pnas.1919055117. Epub 2020 Apr 27.
6
Thrust generation during steady swimming and acceleration from rest in anguilliform swimmers.
J Exp Biol. 2019 Nov 18;222(Pt 22):jeb212464. doi: 10.1242/jeb.212464.
7
Red muscle activity in bluegill sunfish Lepomis macrochirus during forward accelerations.
Sci Rep. 2019 May 30;9(1):8088. doi: 10.1038/s41598-019-44409-7.
8
Hydrodynamics of linear acceleration in bluegill sunfish, .
J Exp Biol. 2018 Nov 30;221(Pt 23):jeb190892. doi: 10.1242/jeb.190892.
9
DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
Nat Neurosci. 2018 Sep;21(9):1281-1289. doi: 10.1038/s41593-018-0209-y. Epub 2018 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验