Suppr超能文献

鱼类通过调节尾拍运动学来最小化特定速度下的运动成本。

Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport.

机构信息

Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.

Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, Japan.

出版信息

Proc Biol Sci. 2021 Dec 8;288(1964):20211601. doi: 10.1098/rspb.2021.1601. Epub 2021 Dec 1.

Abstract

Energetic expenditure is an important factor in animal locomotion. Here we test the hypothesis that fishes control tail-beat kinematics to optimize energetic expenditure during undulatory swimming. We focus on two energetic indices used in swimming hydrodynamics, cost of transport and Froude efficiency. To rule out one index in favour of another, we use computational-fluid dynamics models to compare experimentally observed fish kinematics with predicted performance landscapes and identify energy-optimized kinematics for a carangiform swimmer, an anguilliform swimmer and larval fishes. By locating the areas in the predicted performance landscapes that are occupied by actual fishes, we found that fishes use combinations of tail-beat frequency and amplitude that minimize cost of transport. This energy-optimizing strategy also explains why fishes increase frequency rather than amplitude to swim faster, and why fishes swim within a narrow range of Strouhal numbers. By quantifying how undulatory-wave kinematics affect thrust, drag, and power, we explain why amplitude and frequency are not equivalent in speed control, and why Froude efficiency is not a reliable energetic indicator. These insights may inspire future research in aquatic organisms and bioinspired robotics using undulatory propulsion.

摘要

能量消耗是动物运动的一个重要因素。在这里,我们检验了一个假设,即鱼类通过控制尾鳍运动学来优化波动游泳时的能量消耗。我们专注于两种在游泳水动力学中使用的能量指标,即运输成本和弗劳德效率。为了排除一个指标而支持另一个指标,我们使用计算流体动力学模型将实验观察到的鱼类运动学与预测的性能景观进行比较,并确定了一个梭形游泳者、鳗形游泳者和幼鱼的能量优化运动学。通过在预测的性能景观中找到实际鱼类占据的区域,我们发现鱼类使用尾鳍拍打频率和幅度的组合来最小化运输成本。这种能量优化策略还解释了为什么鱼类为了游得更快而增加频率而不是幅度,以及为什么鱼类在狭窄的斯特劳哈尔数范围内游泳。通过量化波动波运动学如何影响推力、阻力和功率,我们解释了为什么在速度控制中幅度和频率不是等效的,以及为什么弗劳德效率不是一个可靠的能量指标。这些见解可能会激发未来使用波动推进的水生生物和仿生机器人的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e342/8634626/516c386c8ed0/rspb20211601f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验