Suppr超能文献

定义的 CatWalk 步态参数结合用于预测实验性脊髓损伤大鼠模型中的运动恢复。

Combination of Defined CatWalk Gait Parameters for Predictive Locomotion Recovery in Experimental Spinal Cord Injury Rat Models.

机构信息

Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91052, Germany.

Department of Electronics Engineering, Satya Wacana Christian University, Salatiga 50711, Indonesia.

出版信息

eNeuro. 2021 Mar 9;8(2). doi: 10.1523/ENEURO.0497-20.2021. Print 2021 Mar-Apr.

Abstract

In many preclinical spinal cord injury (SCI) studies, assessment of locomotion recovery is key to understanding the effectiveness of the experimental intervention. In such rat SCI studies, the most basic locomotor recovery scoring system is a subjective observation of animals freely roaming in an open field, the Basso Beattie Bresnahan (BBB) score. In comparison, CatWalk is an automated gait analysis system, providing further parameter specifications. Although together the CatWalk parameters encompass gait, studies consistently report single parameters, which differ in significance from other behavioral assessments. Therefore, we believe no single parameter produced by the CatWalk can represent the fully-coordinated motion of gait. Typically, other locomotor assessments, such as the BBB score, combine several locomotor characteristics into a representative score. For this reason, we ranked the most distinctive CatWalk parameters between uninjured and SC injured rats. Subsequently, we combined nine of the topmost parameters into an SCI gait index score based on linear discriminant analysis (LDA). The resulting combination was applied to assess gait recovery in SCI experiments comprising of three thoracic contusions, a thoracic dorsal hemisection, and a cervical dorsal column lesion model. For thoracic lesions, our unbiased machine learning model revealed gait differences in lesion type and severity. In some instances, our LDA was found to be more sensitive in differentiating recovery than the BBB score alone. We believe the newly developed gait parameter combination presented here should be used in CatWalk gait recovery work with preclinical thoracic rat SCI models.

摘要

在许多脊髓损伤(SCI)的临床前研究中,评估运动功能恢复是理解实验干预效果的关键。在这些大鼠 SCI 研究中,最基本的运动功能恢复评分系统是对动物在开放场中自由漫游的主观观察,即 Basso Beattie Bresnahan(BBB)评分。相比之下,CatWalk 是一种自动化步态分析系统,提供了更详细的参数说明。尽管 CatWalk 参数涵盖了步态,但研究一致报告了单一参数,这些参数与其他行为评估的意义不同。因此,我们认为 CatWalk 生成的任何单一参数都不能代表完全协调的步态运动。通常,其他运动评估,如 BBB 评分,将几种运动特征组合成一个有代表性的评分。出于这个原因,我们对未受伤和 SCI 损伤大鼠之间最具特征性的 CatWalk 参数进行了排名。随后,我们基于线性判别分析(LDA)将排名最高的九个参数组合成一个 SCI 步态指数评分。将得到的组合应用于包含三个胸段挫伤、胸段背侧半切和颈段背柱损伤模型的 SCI 实验,以评估步态恢复情况。对于胸段损伤,我们的无偏机器学习模型揭示了损伤类型和严重程度的步态差异。在某些情况下,我们的 LDA 比 BBB 评分单独使用时更能敏感地区分恢复情况。我们认为,这里提出的新的步态参数组合应该用于具有临床前胸段大鼠 SCI 模型的 CatWalk 步态恢复工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9c/7986542/922f237cfa5d/SN-ENUJ210051F007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验